

Document
Number

AN028-10

Date Issued 2015-09-16

Copyright © 2015 Andes Technology Corporation.
All rights reserved.

EILM ROM Patch

Application Note

Copyright Notice

Copyright © 2015 Andes Technology Corporation. All rights reserved.

AndesCore™, AndeShape™, AndeSight™, AndESLive™, AndeSoft™, AndeStar™, AICE™,

AICE-MCU™, AICE-MINI™, Andes Custom Extension™, and COPILOT™ are trademarks

owned by Andes Technology Corporation. All other trademarks used herein are the property of

their respective owners.

This document contains confidential information of Andes Technology Corporation. Use of this

copyright notice is precautionary and does not imply publication or disclosure. Neither the

whole nor part of the information contained herein may be reproduced, transmitted, transcribed,

stored in a retrieval system, or translated into any language in any form by any means without

the written permission of Andes Technology Corporation.

The product described herein is subject to continuous development and improvement;

information herein is given by Andes in good faith but without warranties.

This document is intended only to assist the reader in the use of the product. Andes Technology

Corporation shall not be liable for any loss or damage arising from the use of any information in

this document, or any incorrect use of the product.

Contact Information

Should you have any problems with the information contained herein, please contact Andes

Technology Corporation

by email support@andestech.com

or online website https://es.andestech.com/eservice/

for support giving:

 the document title

 the document number

 the page number(s) to which your comments apply

 a concise explanation of the problem

General suggestions for improvements are welcome.

EILM ROM Patch Application Note

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page ii

EILM_ROM_Patch_AN028_V1.0

Revision History

Rev. Revision Date
Revised

Chapter-Section
Revised Content

1.0 2015/09/16 All Initial release

EILM ROM Patch Application Note

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page iii

EILM_ROM_Patch_AN028_V1.0

Table of Contents

COPYRIGHT NOTICE ... I

CONTACT INFORMATION ... I

REVISION HISTORY .. II

LIST OF FIGURES .. IV

1. INTRODUCTION ... 1

2. EILM ROM PATCH UNIT ... 2

2.1. SYSTEM BLOCK DIAGRAM ... 2
2.2. ROM PATCH UNIT OPERATIONS .. 3

3. PROGRAMMING SEQUENCE .. 5

3.1. LIMITATIONS ... 5
3.2. MEMORY MAP ... 6
3.3. REFERENCE C CODES WITHOUT PATCHES .. 7
3.4. REFERENCE C CODES WITH PATCHES .. 9

APPENDIX ... 10

APPENDIX I. ROM PATCH UNIT REFERENCE DESIGN .. 10

EILM ROM Patch Application Note

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page iv

EILM_ROM_Patch_AN028_V1.0

List of Figures
FIGURE 1. EILM ROM PATCH UNIT SYSTEM BLOCK DIAGRAM ... 2
FIGURE 2. MEMORY MAP .. 6

EILM ROM Patch Application Note

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page v

EILM_ROM_Patch_AN028_V1.0

Typographical Convention Index

Document Element Font Font Style Size Color

Normal text Georgia Normal 12 Black

Command line,
source code or
file paths

Lucida Console Normal 11 Indigo

VARIABLES OR
PARAMETERS IN
COMMAND LINE,
SOURCE CODE OR
FILE PATHS

LUCIDA CONSOLE BOLD + ALL-CAPS 11 INDIGO

Note or warning Georgia Normal 12 Red

Hyperlink Georgia Underlined 12 Blue

EILM ROM Patch Application Note

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 1

EILM_ROM_Patch_AN028_V1.0

1. Introduction

A trade-off in the modern ASIC/SoC implementation is where to store the firmware. One may

choose to put the firmware in on-chip or off-chip memory. Storing the firmware on-chip reduces

the BOM cost while the capacity off-chip can be several orders of magnitude larger. For the

on-chip option, one may also choose either ROM or embedded flashes. The embedded flash

option allows programmability but it has higher manufacturing cost. The ROM option is a lot

cheaper as well as denser in area, but the non-programmability is its major drawback. Once a

firmware is commenced into ROM, it can no longer be changed. This is a problem if some bugs

are discovered later or new features are required. An approach to solve the non-programmability

problem is to implement a ROM patch unit to redirect fetches to buggy codes to a revised version

(a patched version) in the programmable part of the system. This document provides a reference

hardware design of an EILM ROM patch unit for this purpose. A programming sequence is also

provided to illustrate how to apply patches with the ROM patch unit.

The reference hardware design connects to the AndesCore™ processor through the Andes EILM

interface. You can revise the design to accommodate your ROM interface and bit-width.

EILM ROM Patch Application Note

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 2

EILM_ROM_Patch_AN028_V1.0

2. EILM ROM Patch Unit

2.1. System Block Diagram
Figure 1 illustrates a system with an EILM ROM patch unit. The processor fetches ROM program

through the ROM patch unit. The ROM patch registers record the function entry points to be

redirected. When the processor fetches the first word of a buggy function, the ROM patch unit

will return a jump instruction that jumps to a patched version in the RAM. Then, the processor

executes the patched version instead of the function in the ROM.

Figure 1. EILM ROM Patch Unit System Block Diagram

AndesCore™
Processor

EILM

ROM Patch Unit
ROM

ROM Patch

Registers

EILM

Interface
ROM

Interface

RAM

BUS

EILM ROM Patch Application Note

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 3

EILM_ROM_Patch_AN028_V1.0

2.2. ROM Patch Unit Operations
The patch registers control the ROM patch unit operation. The number of supported patches

depends on the number of patch registers. A patch register defines a patch point, which consists

of three fields and the fields are connected to input ports of the ROM patch unit.

input

input

reg_patch0_en;

[ADDR_MSB:2] reg_patch0_addr;

input [31:0] reg_patch0_data;

The enable field determines whether to enable a patch point (0=disabled, 1=enabled). The

address field points to the entry point of a function to patch, and the data field stores the

instruction data for replacing the function entry point. The most significant bit of the address

field is a parameter, which is dependent on the ROM size.

When ROM patch unit receives a request from the processor, it immediately forwards the

request to the ROM and compares the requested address with all address fields of all patch

points. When the address hits a patch point, the corresponding data field is returned to the

processor. When no patch point matches the requested address, the ROM data is returned to the

processors. The following RTL codes illustrate the comparison logic. The reference code

supports four patches, and you can revise the codes to support more patches.

always @(posedge core_clk or negedge core_reset_n) begin

 if (!core_reset_n) begin

patch0_hit <= 1'b0;

patch1_hit <= 1'b0;

patch2_hit <= 1'b0;

patch3_hit <= 1'b0;

 end

 else if (eilm_addr_grant) begin

patch0_hit <= patch0_hit_nx;

patch1_hit <= patch1_hit_nx;

patch2_hit <= patch2_hit_nx;

patch3_hit <= patch3_hit_nx;

 end

end

EILM ROM Patch Application Note

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 4

EILM_ROM_Patch_AN028_V1.0

assign patch0_hit_nx = reg_patch0_en & (reg_patch0_addr == eilm_addr);

assign patch1_hit_nx = reg_patch1_en & (reg_patch1_addr == eilm_addr);

assign patch2_hit_nx = reg_patch2_en & (reg_patch2_addr == eilm_addr);

assign patch3_hit_nx = reg_patch3_en & (reg_patch3_addr == eilm_addr);

assign patch_miss = ~(patch0_hit|patch1_hit|patch2_hit|patch3_hit);

assign eilm_rdata = ({32{patch_miss}} & rom_rdata)

 | ({32{patch0_hit}} & reg_patch0_data)

 | ({32{patch1_hit}} & reg_patch1_data)

 | ({32{patch2_hit}} & reg_patch2_data)

 | ({32{patch3_hit}} & reg_patch3_data);

The following RTL code illustrates the glue logic to handle the EILM interface protocol. For

more information, please see the “External Local Memory” chapter in “AndeStar™ Interface

Architecture Manual (UM024)”.

always @(posedge core_clk) begin

 eilm_wait_d1 <= eilm_wait;

end

always @(posedge core_clk or negedge core_reset_n) begin

 if (!core_reset_n)

wait_cnt <= 2'b0;

 else if (wait_cnt_en)

wait_cnt <= wait_cnt_nx;

end

assign eilm_stall = (wait_cnt != 2'b0) | eilm_wait_d1;

assign eilm_addr_grant = eilm_req & ~eilm_stall;

assign wait_cnt_nx = (eilm_addr_grant) ? eilm_wait_cnt : wait_cnt - 2'b1;

assign wait_cnt_en = eilm_addr_grant | (wait_cnt != 2'b0);

EILM ROM Patch Application Note

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 5

EILM_ROM_Patch_AN028_V1.0

3. Programming Sequence

This chapter provides reference C codes to illustrate how to apply a patch to a program. A SaG

file is also provided for generating a link script.

3.1. Limitations
To cooperate with the ROM patch unit, the program has two limitations. First, the distance of a

function and a patch should be within +-16MB. Essentially, the ROM patch unit replaces the first

word of a function with a 32-bit jump instruction to patch. The jump offset is a 24-bit immediate,

which means the distance of a function and a patch must be within +-16MB.

Second, each patch point of the patch registers defines a 4-byte aligned location. When a

function is not aligned to 4-byte boundary, it requires two patch registers to replace its entry

point with a 32-bit jump instruction. To efficiently utilize patch registers, the gcc option

-malign-functions can guide the compiler to align functions to 4-byte boundary.

EILM ROM Patch Application Note

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 6

EILM_ROM_Patch_AN028_V1.0

3.2. Memory Map
Figure 2 shows the memory map of the system. A 64 KB ROM starts at address 0x00000, and a

RAM starts at address 0x10000. The patch registers are mapped to system memory, which

starts at address 0x90082000. The register offset for each patch registers is also illustrated in

the figure.

Figure 2. Memory Map

ROM

RAM

…

Patch Registers

0x00000

0x10000

0x90082000

…

{patch0_addr, 1’b0, patch0_en}

patch0_data[31:0]

….

{patch3_addr, 1’b0, patch3_en}

patch3_data[31:0]

+0x04

+0x00

+0x18

+0x1C

EILM ROM Patch Application Note

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 7

EILM_ROM_Patch_AN028_V1.0

3.3. Reference C Codes without Patches
The following C code illustrates a program before it is patched. The program has two source files,

main.c and patch.c. A dummy patch_init() stub is inserted for patch provisioning.

//main.c

#include <stdio.h>

extern int patch_init();

__attribute__ ((noinline))

void rom_func() {

 printf("rom_func");

}

int main(int argc, char* argv[]) {

 if (patch_init() != 0) {

 return 1;

 }

 rom_func();

 return 0;

}

// patch.c

__attribute__ ((section (".patch_init")))

__attribute__ ((noinline))

int patch_init() {

return 0;

}

Both of rom_func and main functions are allocated in the ROM, and rom_func is the target

function that needs a patch. The __attribute__ ((noinline)) is added to the function to

disable compiler optimization that inlines the function.

The patch_init stub function is provisioned for applying patches. The function attributes help

linker allocate patch_init to RAM with a fixed address. The function is initially a dummy

function. If patching is needed, the function should download the revised code into the RAM

space and initial the patch registers to redirect the function entry being patched to the revised

versions.

EILM ROM Patch Application Note

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 8

EILM_ROM_Patch_AN028_V1.0

The following code illustrates a SaG file that allocates the patch_init to the RAM space. You

can execute the command “nds_ldsag patch.sag” to generate a link script (nds32.ld). For

more information, please see “Andes SaG Application Examples (WP-020)” and the “Linker

Script Generation” chapter in “Andes Programming Guide (PG-009)”.

// patch.sag

USER_SECTIONS .patch_init

ROM 0x00000

{

 EILM_ROM 0x00000 {

* EXCLUDE_FILE (patch.o) (+RO)

 }

}

RAM 0x10000 {

 PATCH 0x10000 {

* (.patch_init)

 patch.o (+RO)

 }

 DATA 0x10100 {

* (+RW, +ZI)

 }

}

EILM ROM Patch Application Note

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 9

EILM_ROM_Patch_AN028_V1.0

3.4. Reference C Codes with Patches
The following C code illustrates how to replace rom_func with a revised version rom_func_v2.

//patch.c

#include <stdio.h>

#define PATCH_REG_BASE ((unsigned int volatile*)0x90082000)

extern void rom_func();

void rom_func_v2() {

 printf("rom_func_v2\n");

}

__attribute__ ((section (".patch_init")))

__attribute__ ((noinline))

int patch_init() {

 unsigned int jump_instr = 0x48000000 | ((rom_func_v2 - rom_func)/2));

 PATCH_REG_BASE[1] = __builtin_bswap32(jump_instr);

 PATCH_REG_BASE[0] = (unsigned int)&rom_func | 0x1;

 return 0;

}

The patch_init stub function initializes the patch registers. The PATCH_REG_BASE[0] is the

address field and enable field of the patchpoint0 register. The address field should points to the

entry address of rom_func, and the enable field should be set. The PATCH_REG_BASE[1] is data

field of the patchpoint0 register, which should be a jump instruction to the revised rom_func_v2.

The immediate field of the jump instruction is a relative amount between the instruction PC and

the target of the jump, so the offset value is (rom_func_v2 - rom_func). The example codes

assumes the system data endian is little endian, and __builtin_bswap32 converts the machine

code for the instruction to little endian.

EILM ROM Patch Application Note

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 10

EILM_ROM_Patch_AN028_V1.0

Appendix

Appendix I. ROM Patch Unit Reference Design

module rom_patch_unit(

 core_clk,

 core_reset_n,

 eilm_addr,

 eilm_req,

 eilm_wdata,

 eilm_web,

 eilm_ifetch_n,

 eilm_wait_cnt,

 eilm_wait,

 eilm_rdata,

 eilm_status,

 eilm_size,

 rom_addr,

 rom_req,

 rom_rdata,

 rom_wait_cnt,

 rom_wait,

 rom_status,

 reg_patch0_en,

 reg_patch0_addr,

 reg_patch0_data,

 reg_patch1_en,

 reg_patch1_addr,

 reg_patch1_data,

 reg_patch2_en,

 reg_patch2_addr,

 reg_patch2_data,

EILM ROM Patch Application Note

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 11

EILM_ROM_Patch_AN028_V1.0

 reg_patch3_en,

 reg_patch3_addr,

 reg_patch3_data

);

parameter ADDR_MSB = 15;

parameter EILM_SIZE = 4;

input core_clk;

input core_reset_n;

input [ADDR_MSB:2] eilm_addr;

input eilm_req;

input [31:0] eilm_wdata;

input [3:0] eilm_web;

input eilm_ifetch_n;

output [1:0] eilm_wait_cnt;

output eilm_wait;

output [31:0] eilm_rdata;

output eilm_status;

output [3:0] eilm_size;

input reg_patch0_en;

input [ADDR_MSB:2] reg_patch0_addr;

input [31:0] reg_patch0_data;

input reg_patch1_en;

input [ADDR_MSB:2] reg_patch1_addr;

input [31:0] reg_patch1_data;

input reg_patch2_en;

input [ADDR_MSB:2] reg_patch2_addr;

input [31:0] reg_patch2_data;

input reg_patch3_en;

input [ADDR_MSB:2] reg_patch3_addr;

input [31:0] reg_patch3_data;

EILM ROM Patch Application Note

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 12

EILM_ROM_Patch_AN028_V1.0

output [ADDR_MSB:2] rom_addr;

output rom_req;

input [31:0] rom_rdata;

input [1:0] rom_wait_cnt;

input rom_wait;

input rom_status;

reg [1:0] wait_cnt;

wire [1:0] wait_cnt_nx;

wire wait_cnt_en;

wire eilm_addr_grant;

wire eilm_stall;

reg eilm_wait_d1;

reg patch0_hit;

reg patch1_hit;

reg patch2_hit;

reg patch3_hit;

wire patch0_hit_nx;

wire patch1_hit_nx;

wire patch2_hit_nx;

wire patch3_hit_nx;

wire patch_miss;

// Glue Logic

assign rom_addr = eilm_addr;

assign rom_req = eilm_req;

assign eilm_wait_cnt = rom_wait_cnt;

assign eilm_wait = rom_wait;

assign eilm_status = rom_status;

assign eilm_size = EILM_SIZE;

EILM ROM Patch Application Note

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 13

EILM_ROM_Patch_AN028_V1.0

always @(posedge core_clk) begin

 eilm_wait_d1 <= eilm_wait;

end

always @(posedge core_clk or negedge core_reset_n) begin

 if (!core_reset_n)

 wait_cnt <= 2'b0;

 else if (wait_cnt_en)

 wait_cnt <= wait_cnt_nx;

end

always @(posedge core_clk or negedge core_reset_n) begin

 if (!core_reset_n) begin

 patch0_hit <= 1'b0;

 patch1_hit <= 1'b0;

 patch2_hit <= 1'b0;

 patch3_hit <= 1'b0;

 end

 else if (eilm_addr_grant) begin

 patch0_hit <= patch0_hit_nx;

 patch1_hit <= patch1_hit_nx;

 patch2_hit <= patch2_hit_nx;

 patch3_hit <= patch3_hit_nx;

 end

end

assign eilm_stall = (wait_cnt != 2'b0) | eilm_wait_d1;

assign eilm_addr_grant = eilm_req & ~eilm_stall;

assign wait_cnt_nx = (eilm_addr_grant) ? eilm_wait_cnt : wait_cnt - 2'b1;

assign wait_cnt_en = eilm_addr_grant | (wait_cnt != 2'b0);

EILM ROM Patch Application Note

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 14

EILM_ROM_Patch_AN028_V1.0

// Patch Logic

assign patch0_hit_nx = reg_patch0_en & (reg_patch0_addr == eilm_addr);

assign patch1_hit_nx = reg_patch1_en & (reg_patch1_addr == eilm_addr);

assign patch2_hit_nx = reg_patch2_en & (reg_patch2_addr == eilm_addr);

assign patch3_hit_nx = reg_patch3_en & (reg_patch3_addr == eilm_addr);

assign patch_miss = ~(patch0_hit|patch1_hit|patch2_hit|patch3_hit);

assign eilm_rdata = ({32{patch_miss}} & rom_rdata)

 | ({32{patch0_hit}} & reg_patch0_data)

 | ({32{patch1_hit}} & reg_patch1_data)

 | ({32{patch2_hit}} & reg_patch2_data)

 | ({32{patch3_hit}} & reg_patch3_data)

 ;

endmodule

	Revision History
	Table of Contents
	List of Figures
	1. Introduction
	2. EILM ROM Patch Unit
	2.1. System Block Diagram
	2.2. ROM Patch Unit Operations

	3. Programming Sequence
	3.1. Limitations
	3.2. Memory Map
	3.3. Reference C Codes without Patches
	3.4. Reference C Codes with Patches

	Appendix
	Appendix I. ROM Patch Unit Reference Design

