
WWW.ANDESTECH.COM

Driving Innovations™

Andes Programming Guide

Confidential Driving InnovationsTM

2

Overview

Andes Toolchains

NDS32 Assembly Language

Pseudo-instructions

Application Binary Interface (ABI)

Andes Intrinsic Function Programming

Inline Assembly Programming

Advanced Programming Optimization

Confidential Driving InnovationsTM

3

Documents for Reference

Andes Programming Guide

AndeStar™ ISA (Instruction Set Architecture)

AndeStar™ SPA (System Privilege Architecture)

These documents can be found in AndeSight™ or BSP.
Folder: C:\Andestech\AndeSight212MCU\doc

 or C:\Andestech\AndeSight212STD\doc

WWW.ANDESTECH.COM

Andes Toolchains

Confidential Driving InnovationsTM

5

Toolchains

Andes toolchains are built from GNU, including gcc, as,
and ld.

Latest toolchains are in

 BSP v4.1.0 (Windows and Linux version)

 AndeSight v2.1.2 STD/MCU (IDE)

Andes library support includes glibc, uClibc, Newlib
and MCUlib.

 For non-OS/RTOS application – MCUlib and Newlib

 For Linux application – glibc and uClibc

Document:

《Andes_Programming_Guide_for_ISA_V3_PG010_V1.2》

Confidential Driving InnovationsTM

6

Andes Toolchains

32/16-bit mixed-length instructions

Andes defines three versions of baseline instruction
set – v1, v2, and v3

V3m (N7, N8) is subset of v3 and is reduced registers

For HW configuration related of V3

 V3j is for reduced registers (16 GPRs)

 V3f is for double precision FPU

 V3s is for single precision FPU

Confidential Driving InnovationsTM

7

Andes Toolchains

Naming format:

 EX: nds32le-elf-mculib-v3

 nds32[endian]-[os]-[lib]-[baseline ver.]

[endian] – le | be.

[os] – elf | linux.

[lib] –

For elf – mculib | newlib

For linux – glibc | uclibc

[baseline ver.] – v1, v2, v3, v3m

 v[1|2|3][m|j|f|s] – EX: v3m, v3j, v3f, ….

Confidential Driving InnovationsTM

8

Andes Toolchains

MCUlib (based on Newlib) is a library with

 Andes optimization enhancement for

 MCU applications and small code size.

N705, N801, E801, and S801 – V3m

nds32le-elf-mculib-v3m

N968A – V3

nds32le-elf-mculib-v3

nds32le-elf-mculib-v3j (16 GPR)

Confidential Driving InnovationsTM

9

Andes Toolchains

N1068A – V3

nds32le-elf-mculib-v3

nds32le-elf-newlib-v3s

nds32le-elf-mculib-v3j (16 GPR)

nds32le-linux-glibc-v3 (Linux)

nds32le-linux-uclibc-v3 (Linux)

N1337 – V3

nds32le-elf-mculib-v3

nds32le-linux-glibc-v3 (Linux)

nds32le-linux-uclibc-v3 (Linux)

Confidential Driving InnovationsTM

10

Andes DSP Library (1)

Basic math: vector mathematics

Fast math: sin, cos, atan, atan2, sqrt, etc.

Complex math

Statistics: max, min, RMS, etc.

Filtering: IIR, FIR, LMS, etc.

Transforms: FFT, DCT/DCT4

Matrix functions

PID controller, Clark and Park transforms

MISC: copy/fill arrays, data type conversions, etc.

Confidential Driving InnovationsTM

11

Andes DSP Library (2)

Linking with -ldsp (in the nds32le-elf/lib/libdsp.a of the
toolchains)

Including header files provided by Andes DSP library.
They are named according to function categories:

 nds32_basic_math.h

 nds32_complex_math.h

 nds32_controller_math.h

 nds32_filtering_math.h

 nds32_matrix_math.h

 nds32_statistics_math.h

 nds32_transform_math.h

 nds32_utils_math.h

-ldsp setting in
AndeSight™

Confidential Driving InnovationsTM

12

Start a Toolchain Console

Start  All Programs  Andestech 

 AndeSight v2.1.2 STD/MCU  Toolchains

Running “Cygwin”.

Confidential Driving InnovationsTM

13

Compiler Options

Get a list of all supported options, use command:

 mypc> nds32le-elf-gcc --help

For target specific options, enter:

mypc> nds32le-elf-gcc --target-help

Confidential Driving InnovationsTM

14

Binutils

nds32le-elf-gcc

 Could do compile, assemble, link…

nds32le-elf-as

 Assembler

nds32le-elf-ld

 Link object files

nds32le-elf-ar

 For creating, modifying and extracting from archives

Confidential Driving InnovationsTM

15

Binutils (cont)

nds32le-elf-nm

 List symbols from object files

nds32le-elf-size

 List the section size of an object or archive file

nds32le-elf-readelf

Display information from any ELF format object file

nds32le-elf-objdump

Display code information in object files

nds32le-elf-objcopy

 Copy and translates object files

Confidential Driving InnovationsTM

16

Toolchains Default Definitions

To check if a feature is enabled as default, issue the
following command:

 nds32le-elf-gcc -E -dM - < /dev/null | grep NDS32

Useful to determine which toolchains are used.

Confidential Driving InnovationsTM

17

Nds32-elf-gcc Options Introduction

--help : Display gcc help information

--target-help

Display target specific options

-g

 Produce debugging information

 The default level is 2

 -g3 includes macro definitions

-S

 Compile only; do not assemble or link

-mvh

 Enable Virtual Hosting support.

Confidential Driving InnovationsTM

18

Nds32-elf-ld Options Introduction

-nostartfiles

Do not use the standard system startup files when
linking.

Confidential Driving InnovationsTM

19

Sections

GNU Default Pseudo-ops Supporting Sections:
 .text code and constants

 .data Initialized data

 .bss un-initialized data

Andes Pseudo-ops Supporting Sections:
 .sdata_d for double-word sized (8-byte) small data items.

 .sdata_w for word sized (4-byte) small data items.

 .sdata_h for half-word sized (2-byte) small data items.

 .sdata_b for byte sized small data items.

 .sbss_d for double-word sized (8-byte) small data items.

 .sbss_w for word sized (4-byte) small data items.

 .sbss_h for half-word sized (2-byte) small data items.

 .sbss_b for byte sized small data items.

Confidential Driving InnovationsTM

20

Linker Analysis (1)

int a;

int k = 3;

int foo (void)

{

 return (k);

}

int b = 12;

int main (void)

{

 a =0;

 return (a + b);

}

 a = 0

 k = 3

 b = 12

 .
 .
 .
addi $sp,$sp,#-8
swi $fp,[$sp+#4]
addi $fp,$sp,#0
 .
 .

.text

.data

.bss

Confidential Driving InnovationsTM

21

Linker Analysis (2)

 k = 3

 b = 12

.

.

.

addi $sp,$sp,#-8
swi $fp,[$sp+#4]
addi $fp,$sp,#0

.

.

.text

.data

Header .
.
.

addi $sp,$sp,#-8
swi $fp,[$sp+#4]
addi $fp,$sp,#0

.

.

0

.text

.data

.bss

Image File
(ELF)

Memory
Image

Loader

• Image file has header. It has specific meaning for “Loader”.

• Memory image has extra “.bss” section.

 k = 3

 b = 12

Confidential Driving InnovationsTM

22

Linker Analysis (3)

system code

main ()

a ()

system data

int e = 7;

int *ep = &e;

int x = 15;

unintialized data

headers

.symtab
.debug

.text

.data

.bss

Re-locatable Object Files Executable Object Files Source codes

int e = 7;

int main()
{
 int r = a();
 return r;
}

m.c

extern int e;
int *ep=&e,
x=15, y;

int a()
{
 return
*ep+x+y;
}

a.c

system code

system data

.text

.data

main ()

int e = 7;

m.o

.text

.data

a ()

int *ep = &e;

int x = 15;

int y;

a.o

.text

.data

.bss

WWW.ANDESTECH.COM

NDS32 Assembly Language

Confidential Driving InnovationsTM

24

General Syntax

 Comment : ‘#’ at column 1 and ‘!’ anywhere in the line except
inside quotes.

 Multiple instructions per line are allowed though not
recommended and should be separated by “;”.

 An integer can use specified in decimal, octal (prefixed with 0),
hexadecimal (prefixed with 0x), and binary (prefixed with 0b).
 For example, 128, #128, 0200, #0200, 0x80, #0x80, 0b10000000, and

#0b10000000 are all identical.

 The leading ‘#’ is optional.

 Assembler is not case-sensitive in general except user defined
label.
 For example, “jral F1” is different from “jral f1” while it is the same as

“JRAL F1”.

Confidential Driving InnovationsTM

25

GPR (General Purpose Register)

Confidential Driving InnovationsTM

26

GPR of Reduced Register

WWW.ANDESTECH.COM

Pseudo-instructions

Confidential Driving InnovationsTM

28

Pseudo-instructions

There are many software instructions defined to
make assembly programming much easier.
These are pseudo-instructions.

 load 32-bit value/address

 li rt5,imm_32

loads 32-bit integer into register rt5.

sethi rt5,hi20(imm_32) and then

 ori rt5,rt5,lo12(imm_32)

 la rt5,var

loads 32-bit address of var into register rt5.

sethi rt5,hi20(var) and then

 ori rt5,rt5,lo12(var)

Confidential Driving InnovationsTM

29

Pseudo Instructions (cont)

 load/store variables

 l.{bhw} rt5,var

loads value of var into register rt5.

sethi $ta,hi20(var) and then

 l{bhw}i rt5,[$ta+lo12(var)]

 s.{bhw} rt5, var

stores register rt5 to var.

sethi $ta,hi20(var) and then

 s{bhw}i rt5,[$ta+lo12(var)]

Confidential Driving InnovationsTM

30

Pseudo Instructions (cont)

negation

 not rt5,ra5 alias of nor rt5,ra5,ra5

 neg rt5,ra5 alias of subri rt5,ra5,0

branch to label/branch and link to function name
 br rb5 alias of jr rb5

 b label branch to label

 bral rb5 alias of jral rb5

 bal fname It is translated into “jal fname”

 or “la $ta,fname; bral $ta”

 call fname call function name, same as “jal fname”

Confidential Driving InnovationsTM

31

Pseudo Instructions (cont)

move

move rt5,ra5 for 16-bits, this is mov55 rt5,ra5
 for 32-bits, this is ori rt5,ra5,0

move rt5,var this is the same as l.w rt5,var

move rt5,imm_32 this is the same as li rt5, imm_32

Confidential Driving InnovationsTM

32

Pseudo Instructions (cont)

push/pop

 pushm ra5,rb5 push content from ra5 to rb5 into stack.

 popm ra5,rb5 pop stack values into ra5 to rb5.

 push ra5 push content of register ra5 into stack.

 same as pushm ra5,ra5

 pop rt5 pop stack value into register rt5.

 same as popm rt5,rt5

WWW.ANDESTECH.COM

Application Binary Interface (ABI)

Confidential Driving InnovationsTM

34

Introduction to ABI

ABI - Application Binary Interface

 The Andes architecture ABI defines the interface for
compiled programs and assembled programs running on
Andes architecture to work jointly.

 The purpose of Andes architecture ABI is to deliver high
performance and binary compatibility.

Our ABI

 ABI2 (for v3, v3j and v3m Toolchains)

 ABI2FP+ (for v3s and v3f Toolchains)

Confidential Driving InnovationsTM

35

Primitive Data Types

struct Test2{

 char c1;

 unsigned int ui1;

 char c2;

 unsigned int ui2;

};

struct Test1 {

 unsigned int ui1;

 unsigned int ui2;

 char c1;

 char c2;

};

ui1

ui2

c1 c2

c1

ui1

c2

ui2

Confidential Driving InnovationsTM

36

C Language Mapping of Andes Platform

Confidential Driving InnovationsTM

37

Memory Layout

Heap

 global variables

 static variables

 constant data

…

Stack

 local variables

 context switch data

… High Address

Low Address

Stack

Heap

Confidential Driving InnovationsTM

38

Calling Convention – Registers

 “caller” invokes “callee”.

 caller save registers
 $r0 ~ $r5, $r16 ~ $r27

 callee save registers
 $r6 ~ $r10, $r11 ~ $r14, $r28, $r29, $r30

 Argument Passing: $r0 ~ $r5
 Return Values: $r0 ~ $r1
 other registers
 $r15 : Temporary Register (reserved for assembler

instruction expansion)
 $r16 : Trampoline Register (as static chain register for

nested function)
 $r28 (fp), $r29 (gp), $r30 (lp), $r31 (sp)

reduced register configuration

full-set register configuration

callee-save registers

int foo()

{ bar(); }

foo(): caller

bar(): callee

Confidential Driving InnovationsTM

39

Calling Convention – Stack Frame

Stack frame

 $sp : Stack Pointer

Top of stack frame

 $fp : Frame Pointer

Record the original

 $sp position

Omitted by default.

Without omit $fp

 -fno-omit-frame-pointer

Stack Pointer

Confidential Driving InnovationsTM

40

Calling Convention- Argument Passing
and Return

GPRs $r0~$r5 are used to pass arguments.

If GPRs $r0~$r5 are not sufficient to hold all
arguments, the remaining ones will be passed in the
outgoing arguments block of caller’s stack frame.

For 4-byte primitive type, the return value is returned
in $r0. For 8-byte primitive type, the return value is
returned in $r0 and $r1.

WWW.ANDESTECH.COM

Andes Intrinsic Function

Programming

Confidential Driving InnovationsTM

42

Intrinsic Function

These functions available in a given language whose
implementation is handled specially by the compiler.

Intrinsic function is usually inserted inline.

Avoid the overhead of a function call.

Confidential Driving InnovationsTM

43

Most Commonly Used

__nds32__mtsr(0x0, NDS32_SR_INT_MASK);

 Set $int_mask=0

tmp = __nds32__mfsr(NDS32_SR_PSW);

 Put the vaule of $psw to tmp

__nds32__gie_dis()

Disable global interrupt (will take effect immediately)

__nds32__gie_en()

 Enable global interrupt (will take effect immediately)

Confidential Driving InnovationsTM

44

Standby

__nds32__standby_no_wake_grant()

 STANDBY no_wake_grant

__nds32__standby_wake_grant()

 STANDBY wake_grant

__nds32__standby_wait_done()

 STANDBY wait_done

Confidential Driving InnovationsTM

45

Other Useful Intrinsic Functions (1)

__nds32__dsb()

__nds32__isb()

__nds32__nop()

__nds32__enable_int(enum nds32_intrinsic int id)

__nds32__disable_int(enum nds32_intrinsic int id)

__nds32__set_pending_swint ()

 Sets pending software interrupt

__nds32__clr_pending_swint ()

 Clears pending software interrupt

WWW.ANDESTECH.COM

Inline Assembly Programming

Confidential Driving InnovationsTM

47

Inline Assembly

Inline assembly programming is a way GCC
provides to write assembly code embedded in C
program.

To declare inline assembly functions, we use
__asm__ (...) or asm (...)

Example:

Confidential Driving InnovationsTM

48

Format of Inline Assembly

Basic form of inline assembly programming:

 __asm__ ("an assembly code template“

 : a list of output operands

 : a list of input operands

 : a list of clobber registers);

 In a clobber list, registers or memory are listed to inform
GCC that these items have been modified.

 Register used in an assembly code template have to be
specified in the clobber list so that GCC will assume the
content of the registers are invalid after the inline assembly
statement and generate extra instructions to maintain
correct register status.

Confidential Driving InnovationsTM

49

int func_asm_1 (int i, int j)

{

 int ret;

 __asm__ ("add\t%0, %1,
%2\n\t"

 "movi\t$r6, 123\n\t"

 "add\t%0, %0, $r6"

 : "=r" (ret)

 : "r" (i), "r" (j)

 : "$r6");

 return ret;

}

 ret = i + j + 123;

Example of Inline Assembly

 "%0", "%1", and "%2" represent
three operands and GCC will replace
them from the output operand list to
the input operand list.

 A constraint of an operand is used to
indicate the addressing mode.
Constraint "r" means operands should
be placed in general registers and
constraint modifier "=" is used for
output operands, indicating the
operands are write-only.

 "\t" to separate an instruction from its
first operand in an assembly code
template

 “\n\t” is due to gcc sends each
instruction as a string to AS.

Confidential Driving InnovationsTM

50

Volatile

GCC may move or delete statements in optimization.

If our assembly statement must execute where we put
it, (must not moved out when optimization).

If it is just for doing some calculations and no side
effects, it’s better to use volatile to avoid optimization.

 __asm__ __volatile__ ("setend.b");

 asm volatile (... : ... : ... : ...);

Confidential Driving InnovationsTM

51

Proper Use of Volatile in C (1)

A variable should be declared volatile whenever its
value could change unexpectedly.

1. Memory-mapped peripheral registers

2. Global variables modified by an interrupt service routine

3. Global variables accessed by multiple tasks within a multi-
threaded application

Reference link:

 http://www.barrgroup.com/Embedded-Systems/How-To/C-
Volatile-Keyword

http://www.barrgroup.com/Embedded-Systems/How-To/C-Volatile-Keyword
http://www.barrgroup.com/Embedded-Systems/How-To/C-Volatile-Keyword
http://www.barrgroup.com/Embedded-Systems/How-To/C-Volatile-Keyword
http://www.barrgroup.com/Embedded-Systems/How-To/C-Volatile-Keyword
http://www.barrgroup.com/Embedded-Systems/How-To/C-Volatile-Keyword
http://www.barrgroup.com/Embedded-Systems/How-To/C-Volatile-Keyword
http://www.barrgroup.com/Embedded-Systems/How-To/C-Volatile-Keyword
http://www.barrgroup.com/Embedded-Systems/How-To/C-Volatile-Keyword
http://www.barrgroup.com/Embedded-Systems/How-To/C-Volatile-Keyword

Confidential Driving InnovationsTM

52

Proper Use of Volatile in C (2)

Example: Global variables modified by an
interrupt service routine

 void xxx(void)

{

 wait=1;

 while (wait!=0);

}

void timer0_isr(void)

{

 wait=0;

 }

WWW.ANDESTECH.COM

Advanced Programming
Optimization

Confidential Driving InnovationsTM

54

Options for Code Size Optimization

Compiler Options
 -Os

Sometimes the code size optimizations may degrade
the performance.

Three code size optimization levels.

Option Code Size Optimization Level

-Os1
Minimum code size optimizations.
Performance is still concerned.

-Os2
Partial code size optimizations.
Little performance concern.

-Os3 (-Os)
Maximum code size optimizations.
Performance may seriously drop.

Confidential Driving InnovationsTM

55

Options for Code Speed Optimization

Compiler Options

 -O3 (-O0, -Og, -O1, -O2, -O3) (-Og: better debuggability than -O1)

 -funroll-loops / -funroll-all-loops

 -ftree-switch-shortcut – Experimental for switch statement.

 -malign-functions – aligns function entries to 4-byte boundaries.

 -malways-align – enforces 4-byte alignment on jump targets, return

addresses and function entries.

 “-O3” implies “-finline-functions”. Avoid it with “-fno-inline-functions”.

Option Description

-funroll-loops
Number of iterations can be determined at compile time or
upon entry to the loop. Compiler has a set of heuristics to
estimate whether to unroll loop or not.

-funroll-all-loops
Even if their number of iterations is uncertain when the loop
is entered. This option probably makes programs run more
slowly if it loses locality after unrolling.

Confidential Driving InnovationsTM

56

Options to Remove Unused Sections

Following compiler and linker options have to be
enabled at the same time.

Compiler Options

 -ffunction-sections

 -fdata-sections

Linker Options

 (gcc as linker) -Wl,--gc-sections

 (ld as linker) --gc-sections

Easily see what sections are discarded by linker

 (gcc as linker) -Wl,--print-gc-sections

 (ld as linker) --print-gc-sections

Confidential Driving InnovationsTM

57

EX9 Optimization

Compiler Option

 -mex9

Linker Options

 (gcc as linker) -Wl,--mex9

 (ld as linker) --mex9

Compiler uses16-bit “ex9.it <INDEX>” with <INDEX>
pointing to the corresponding 32-bit instruction.

Enable by default in “-Os”.

 To disable it

(gcc as linker) -Wl,--mno-ex9

(ld as linker) --mno-ex9

Confidential Driving InnovationsTM

58

IFC (Inline Function Call) Optimization

IFCall9 (16b), IFCall (32b) and IFRet16 (16b)
instructions are used to share the common code.

Compiler Option

 -mifc

Linker Options

 (gcc as linker) -Wl,--mifc

 (ld as linker) --mifc

Confidential Driving InnovationsTM

59

Default Applied Options of Optimization

 Using -fno-omit-frame-pointer, -fdelete-null-pointer-checks, -
fno-inline-functions, -mno-relax, -mno-align-functions, -mno-
always-align, -mno-innermost-loop, -mno-ex9, and -mno-ifc
can avoid the options.

Confidential Driving InnovationsTM

60

Set Different Optimization Levels (1)

Set optimization level for a function.

Syntax:

 void __attribute__ ((optimize("Os"))) __cpu_init()

 {

 …..

 }

Confidential Driving InnovationsTM

61

Set Different Optimization Levels (2)

Set optimization level for a block codes in a C file.

Syntax

 #pragma GCC push_options
#pragma GCC optimize ("Os")
 /* code to be set to -Os */
#pragma GCC pop_options

 /* restore to original optimization level */

Confidential Driving InnovationsTM

62

Set Different Optimization Levels (3)

Set optimization level for a C file.

Right-Click on the file, then select “Properties”.

WWW.ANDESTECH.COM

Link Time Optimization in GCC

Confidential Driving InnovationsTM

64

Link Time Optimization in GCC

Link Time Optimization (LTO) – A very aggressive
optimization implemented by GCC.

Should use GCC to complete all the works of building
a program, including compilation and linking.

Option – “-flto”

Notice

 Avoid defining the same module name as it’s presented in
the library.

 If a module that may be called from the MCU standard
library (e.g. the weak function nds_write() redirected from
libc.a), it is suggested to use __attribute__((used)) to
prevent it from being optimized out by LTO.

Confidential Driving InnovationsTM

65

Optimization for Speed – Console Mode

Setting C compiler options “-O3 -flto -funroll-loops”

Setting C linker options “-O3 -flto -funroll-loops”

Confidential Driving InnovationsTM

66

Optimization for Speed – AndeSight

Confidential Driving InnovationsTM

67

Optimization for Code Size – Console
Mode

Setting C compiler options “-Os -flto -ffunction-
sections -fdata-sections”

Setting C linker options “-Os -flto -Wl,--gc-sections”

Confidential Driving InnovationsTM

68

Optimization for Code Size – AndeSight

WWW.ANDESTECH.COM

Addressing Space for Programs

Confidential Driving InnovationsTM

70

Small Data Area

Most programs do not require complete 32-bit
addressing space because of limited resources (e.g.
ROM size) in practice.

Improve the overall performance and code size simply
with the concept of small data area or using different
code models in compiler option.

Andes SDA (Small Data Area) can be addressed by an
offset plus register $gp. (limited to +/- 256KB)

 .sdata_{b|h|w|d}: Section for initialized global variables.

 .sbss_{b|h|w|d}: Section for uninitialized global variables.

Confidential Driving InnovationsTM

71

Code Models

Tell compiler which scale your programs and data are

Option: -mcmodel=[small | medium | large]

-mcmodel=small (code model: 16M text, 512K data+rodata)

 Compiler assumes that all the data is in the small data area
and generates addressing with offset plus $gp.

-mcmodel=medium (code model: 16M text, 512K data, 4G rodata)

Default setting. RO-data beyond 512K of small data area
full 32-bit address (constant variables). Other global
variables are within 512K range of small data area and
accessible with $gp relative instruction.

-mcmodel=large (code model: 4G text, 4G data + rodata)

 All the text and data are all over complete 32-bit addressing
space. Compiler leaves all the relaxation works to linker.

WWW.ANDESTECH.COM

Others

Confidential Driving InnovationsTM

73

Local Memory

Please refer to SPA document 10.4.8 DLM Base
Register

If we want to set DLM base in 0x100000

 gdb command: set $dlmb=0x100001

 C Code:

 __nds32__mtsr(0x100001, NDS32_SR_DLMB);

 __nds32__dsb();

It has to be aligned to multiple of DLM size

Confidential Driving InnovationsTM

74

(gdb) show trust-readonly-sections
Mode for reading from readonly sections is on.
(gdb) set trust-readonly-sections off

If trust-readonly-sections is set, GDB will fetch values
from read-only sections out of local files, rather than
from the target.

Turn off trust-
readonly-sections
in MCU Program

Debug

GDB Returns Unexpected Value from
Memory

Confidential Driving InnovationsTM

75

Memory Map Setting

Internal breakpoints is set by gdb commands
like next and finish.

GDB can automatically decide using HW or SW
breakpoints base on the address is RO or RW.

With AndeSight target platform, please check
“AndeSight*\MemoryMap*.mem”.

With user’s target platform, please check Memory Map file.

Confidential Driving InnovationsTM

76

Andes e-service is a web-based support ticket system.
It is a convenient way to get quick response of your
question.

How to apply for a new account?

 Please send your information to es.admin@andestech.com

Including your name, e-mail, company name and telephone number

mailto:es.admin@andestech.com

Confidential Driving InnovationsTM

77

How to Use E-service?

• E-service website: http://es.andestech.com/ilogin.php

You can track your ticket

in e-service system

http://es.andestech.com/ilogin.php

