

Document
Number

PG010-16

Date Issued 2017-08-11

Copyright © 2014–2017 Andes Technology Corporation.
All rights reserved.

Andes Programming

Guide for ISA V3

Copyright Notice

Copyright © 2014–2017 Andes Technology Corporation. All rights reserved.

AndesCore™, AndeShape™, AndeSight™, AndESLive™, AndeSoft™, AndeStar™, and Andes

Custom Extension™ are trademarks owned by Andes Technology Corporation. All other

trademarks used herein are the property of their respective owners.

This document contains confidential information pertaining to Andes Technology Corporation.

Use of this copyright notice is precautionary and does not imply publication or disclosure.

Neither the whole nor part of the information contained herein may be reproduced, transmitted,

transcribed, stored in a retrieval system, or translated into any language in any form by any

means without the written permission of Andes Technology Corporation.

The product described herein is subject to continuous development and improvement. Thus, all

information herein is provided by Andes in good faith but without warranties.

This document is intended only to assist the reader in the use of the product. Andes Technology

Corporation shall not be liable for any loss or damage arising from the use of any information in

this document, or any incorrect use of the product.

Contact Information

Should you have any problems with the information contained herein, you may contact Andes

Technology Corporation through:

e-mail – support@andestech.com

Website – https://es.andestech.com/eservice/

Please include the following information in your inquiries:

 the document title

 the document number

 the page number(s) to which your comments apply

 a concise explanation of the problem

General suggestions for improvements are welcome.

https://es.andestech.com/eservice/

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page ii

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Revision History

Rev. Revision Date Revised Content

1.6 2017/08/11

1. Added N15 and D15 as supported Andes cores (Table 2, Section 2.2.1
and 12.2)

2. Added intrinsic functions for coprocessor ISA extension (Table 20
and Section 12.2.11)

3. Added “NOLOAD” to input_section_description of the SaG script
format for marking an section not to be loaded at runtime (Section
15.1.2.4)

1.5 2017/03/28

1. Changed the document template to V11

2. Added descriptions for ISA V3m+ (Table 1, Section 4.2 and Section
12.2)

3. Added a compiler option “-munalign-access” and updated the
possible values for “-march=” and “-mcpu=” (Section 2.2.1 and 2.2.2)

4. Added two predefined macros “NDS32_EXT_DSP” and
“NDS32_EXT_ZOL” (Section 9.2)

5. Removed the limitation on ROM and flash address space from the
implementation of ROM patching using indirect call functions and
added a compilation flag "-mict-model=[small|large]" for the
implementation. (Section 11, 11.1.2, 11.1.3)

6. Added N650, N820, E830, D10 to descriptions of Andes intrinsic
functions and removed those for N12 (Section 12.2)

7. Corrected the example of __nds32__tlbop_trd (Section 12.2.8)

8. Added the nds_ldsag template for the Windows environment and
updated the default file name of the linker script generated by
nds_ldsag (Section 15.2)

1.4 2016/4/21

1. Added D1088 as a core supporting FPU, coprocessor, and saturation
ISA extension. (Table 2)

2. Introduced two ROM patching approaches: indirect call functions and
function table mechanism (Ch. 1, 11)

3. Gave example lists of AndesCores supporting V3 and V3m ISA.
(Section 12.2)

4. Corrected the descriptions in “Supported CPUs” for all intrinsic
functions. (Section 12.2.1, 12.2.2, 12.2.3, 12.2.4, 12.2.5, 12.2.6)

5. Extended intrinsic functions to support up to 32 interrupts. (Section
12.2.10)

6. Extended intrinsic functions to access the following system registers:

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page iii

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Rev. Revision Date Revised Content
INT_MASK2, INT_PEND2, and INT_PRI2. (Section 12.2.10)

7. Clarified the usage and description of __nds32__set_pending_swint
and __nds32__clr_pending_swint. (Section 12.2.10)

8. Added an intrinsic function “__nds32__clr_pending_hwint” to clear
the pending status for edge-triggered HW interrupts. (Section
12.2.10)

9. Separated the descriptions of __nds32__get_pending_int from those
of __nds32__get_all_pending_int since the latter intrinsic is
deprecated. (Section 12.2.10)

10. Added an intrinsic function “__nds32__get_trig_type” to access
Interrupt Trigger Type Register and updated Table 19. (Section
12.2.10)

11. Added descriptions for memory allocation functions (Ch. 18)

12. Removed “-fno-delete-null-pointer-checks” from the default applied
option at -O0, -Og and -O1 (Table 27)

1.3 2016/2/19

1. Removed the note about the Virtual Hosting limitation when syscall is
used in ISR and advised users not to redirect outputs when Virtual
Hosting is enabled. (Chapter 18)

2. Noted that _malloc_r() and _free_r() may be called automatically
when Virtual Hosting is enabled (Chapter 18)

3. Removed the note about the Virtual Hosting limitation when syscall is
used in ISR and advised users not to redirect outputs when Virtual
Hosting is enabled. (Chapter 18)

1.2 2015/07/28

4. Added “INCLUDE” for including other linker scripts to the SaG
header syntax (Section 15.1.2.1)

5. Added two optimization options “-malign-functions” and
“-malways-align” (Section 19.1.2 and 19.1.6, Table 27)

6. Added DSP extension and ZOL to Table 1 and Table 2

7. Modified the description of the input “critical” in C language ISR
(Section 10.2 and 10.3)

8. Updated supported compiler options (Section 2.2.1)

9. Added “-m[no-]dsp-ext” and “-m[no-]zol-ext” to supported assembler
options (Section 2.2.2)

10. Added -fno-delete-null-pointer-checks to Table 27

11. Noted the applied option differences between BSP v3.2 and BSP v4.0
(Section 19.1.7)

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page iv

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Rev. Revision Date Revised Content
12. Added detailed descriptions about the ZOL optimization (Section

19.4)

13. Noted the usage of “-mcmodel”, “-mvh”, or “-mext-zol” during
compilation and linking. (Section 2.2.1)

1.1 2015/04/10

1. Changed “ldsag” to “LdSaG” and “SAG” to “SaG” (Chapter 15)

2. Added syntax checking to “What’s New” section (Section 1.1)

3. Added EXCLUDE_FILE to input section descriptions of SaG syntax
(Section 15.1.2.4)

1.0 2015/01/26

1. Added two intrinsic functions __nds32__mtsr_isb() and
__nds32__mtsr_dsb() (Section 12.1 and 12.2.2)

2. Added deprecated instructions in typographical convention index
3. In MCUlib, changed the modifier “N” to “ll” and added “F” as a

conversion supportive character. Besides, changed the supportive
character for the precision field as “(.precision)”. (Section 17.2)

4. Added a note about the linking problem when applying -flto to a
program where printf() will be redirected from libc.a by
nds32_write() (Section 19.8.2)

5. Moved the description of adding -fno-omit-frame-pointer to show $fp
in stack frame before the explanations about prologue and epilogue
(Section 8.2.1.2)

6. Re-organized the descriptions about passing the result in memory
(Section 8.2.1.3)

7. Added that -finline-functions is an enabled option at -O3 by default
and may cause the increase of code size (Section 19.1.2 and 19.1.6)

8. Added a performance optimization option “-ftree-switch-shortcut”
(Section 19.1.2)

9. Added nds_write() redirected from libc.a as an example to use
__attribute__((used)) (Section 19.8.2)

10. Added a note to use correct signedness for arguments and return
values when calling intrinsic functions (Ch. 11)

11. Added notes to explain what “nds32_nmih”, “.nds32_wrh” and
“.nds32_jmptbl” sections are for to C-ISR implementation. (Section
10.1, 10.2, 10.3)

12. Added explanations for optimization options
“-fno-delete-null-pointer-checks” and “-fno-strict-aliasing” and
“-fwrapv” (Section 0)

13. Added a summary about optimization levels (Section 19.1.6) and

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page v

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Rev. Revision Date Revised Content
added –Og to Table 27

14. Added Saturation Arithmetic ISA Extension to Table 2

0.5 2014/09/19 Document creation. For major features in BSP v4.0 and differences from
earlier versions, please refer to Section 1.1 What’s New.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page vi

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Table of Contents

COPYRIGHT NOTICE ... I

CONTACT INFORMATION ... I

REVISION HISTORY .. II

LIST OF TABLES ... XI

LIST OF FIGURES .. XII

1. OVERVIEW .. 1

1.1. WHAT’S NEW SINCE BSP V4.0 ... 2

2. GETTING STARTED ... 3

2.1. ANDES INSTRUCTION SET ARCHITECTURE AND INSTRUCTIONS .. 3
2.2. COMMAND LINE OPTIONS ... 5

2.2.1. Compiler Options... 5
2.2.2. Assembler Options... 8
2.2.3. Linker Options .. 11

3. NDS32 ASSEMBLY LANGUAGE .. 16

3.1. GENERAL SYNTAX ... 16
3.2. REGISTERS .. 17

3.2.1. General Purpose Registers (GPR) ... 17
3.2.2. Accumulators d0 and d1 ... 17
3.2.3. Instruction Implied Registers .. 17
3.2.4. Assembler Reserved Register $ta ... 18
3.2.5. Operating System Reserved Registers $p0 and $p1 ... 18

3.3. MISSING OPERAND ... 19
3.3.1. Load/Store Instructions ... 19
3.3.2. Branch Instructions .. 20
3.3.3. Special Instructions... 20

4. MACHINE INSTRUCTIONS .. 22

4.1. 32/16-BIT .. 22
4.2. UNALIGNED DATA HANDLING .. 22
4.3. ENDIANNESS ... 23

5. PSEUDO-OPS .. 24

5.1. LIST OF PSEUDO-OPS... 24

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page vii

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

5.1.1. GNU Default Pseudo-ops Supporting Sections ... 24
5.1.2. Andes Pseudo-ops Supporting Sections ... 24
5.1.3. GNU Default Pseudo-ops Supporting ELF .. 25
5.1.4. Andes Pseudo-ops Supporting ELF .. 30
5.1.5. Data Declaration Pseudo-ops .. 30
5.1.6. Space Declaration Pseudo-ops .. 31

6. PSEUDO-INSTRUCTIONS ... 32

6.1. LIST OF PSEUDO-INSTRUCTIONS ... 32
6.1.1. Deprecated Pseudo-instructions ... 37

6.2. BUILT-IN FUNCTION OPERATORS ... 38

7. MACROS ... 39

7.1. CREATE MACROS IN ASSEMBLY CODE .. 39
7.2. ASSEMBLER DIRECTIVES FOR MACROS .. 40

8. APPLICATION BINARY INTERFACE (ABI) ... 41

8.1. DATA TYPES... 41
8.1.1. Byte Ordering .. 41
8.1.2. Primitive Data Types .. 41
8.1.3. Composite Data Types .. 42
8.1.4. C Language Mapping of Andes Platform .. 43

8.2. CALLING CONVENTION ... 44
8.2.1. ABI2 (for v3, v3j and v3m Toolchains) .. 44
8.2.2. ABI2FP+ (for v3s and v3f Toolchains) ... 52

9. ANDES SPECIFICS ... 55

9.1. GET PC .. 55
9.2. ANDES PREDEFINED MACROS .. 55

9.2.1. Deprecated Predefined Macros ... 59
9.3. CRT0.S .. 60

10. ANDES C LANGUAGE EXTENSION FOR INTERRUPT SERVICE ROUTINE (NOT SUPPORTED

ON S801) .. 62

10.1. SYNTAX FOR SYSTEM RESET HANDLER .. 63
10.1.1. Example.. 67

10.2. SYNTAX FOR INTERRUPT HANDLERS .. 69
10.2.1. Example.. 71

10.3. SYNTAX FOR EXCEPTION HANDLERS .. 72

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page viii

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

10.3.1. Example.. 75
10.4. LINKER OPTIONS ... 76

10.4.1. Linker Script .. 76

11. ROM PATCHING ... 77

11.1. INDIRECT CALL FUNCTIONS .. 78
11.1.1. Implementation of Indirect Call Functions .. 78
11.1.2. Limitations... 79
11.1.3. Tutorial .. 80

11.2. FUNCTION TABLE MECHANISM .. 85
11.2.1. Implementation of Function Table Mechanism ... 85
11.2.2. Limitations... 86
11.2.3. Tutorial .. 86

12. ANDES INTRINSIC FUNCTION PROGRAMMING ... 90

12.1. SUMMARY OF ANDES INTRINSIC FUNCTIONS ... 90
12.2. DETAILED INTRINSIC FUNCTION DESCRIPTION ... 102

12.2.1. Intrinsics for Load/Store ... 103
12.2.2. Intrinsics for Read/Write System and USR Registers... 110
12.2.3. Miscellaneous Intrinsics ... 117
12.2.4. Intrinsics for PE1 Instruction ... 151
12.2.5. Intrinsics for PE2 Instructions ... 160
12.2.6. Intrinsics for String .. 165
12.2.7. Intrinsics for FPU ... 170
12.2.8. Intrinsics for TLBOP .. 176
12.2.9. Intrinsics for Saturation ISA .. 186
12.2.10. Intrinsics for Interrupt .. 196
12.2.11. Intrinsics for COP ISA Extension .. 211

13. USER/KERNEL SPACE ... 235

13.1. PRIVILEGE RESOURCES ... 235
13.1.1. Configuration System Registers... 235
13.1.2. Interruption System Registers ... 235
13.1.3. MMU System Registers ... 235
13.1.4. ICE System Registers ... 236
13.1.5. Performance Monitoring Registers ... 236
13.1.6. Local Memory DMA Registers ... 236
13.1.7. Implementation-Dependent Registers .. 236

13.2. PRIVILEGE RESOURCE ACCESS INSTRUCTIONS .. 237

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page ix

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

13.2.1. Read from/Write to System Registers .. 237
13.2.2. Jump Register with System Register Update .. 237
13.2.3. MMU Instructions .. 238

13.3. PRIVILEGED INSTRUCTIONS .. 239
13.3.1. IRET: Interruption Return ... 239
13.3.2. SETGIE.E/SETGIU.D: Set Global Interruption Enable ... 239
13.3.3. CCTL: Cache Control.. 240
13.3.4. STANDBY: Wait for External Event .. 240

13.4. INSTRUCTIONS FOR USER-SPACE PROGRAM TO ACCESS SYSTEM RESOURCES .. 241
13.4.1. DPREF/DPREFI: Data Prefetch .. 241
13.4.2. SETEND.B/SETEND.L: Set Data Endian ... 241
13.4.3. CCTL: Cache Control.. 241
13.4.4. ISB/DSB: Data/Instruction Serialization Barrier .. 242
13.4.5. STANDBY: Wait for External Event .. 242

13.5. SERIALIZATIONS RELATED TO CPU CONTROL REGISTER ACCESSES ... 243

14. LINKING/LOADING .. 245

14.1. STATIC LINKING .. 245
14.2. DYNAMIC LINKING .. 245
14.3. GUIDELINES TO DECIDE LINKING MODE ... 245

15. LINKER SCRIPT GENERATION .. 246

15.1. SCRIPT FORMAT SAG AND ITS SYNTAX ... 246
15.1.1. BNF Notation for SaG Syntax .. 246
15.1.2. Formal Syntax of SaG Format ... 248

15.2. LINKER SCRIPT GENERATOR (LDSAG) ... 260

16. OBJECT FILES .. 262

16.1. ELF FILE ... 262
16.2. EXAMINE ELF FILE ... 263

17. ANDES MCULIB .. 265

17.1. FEATURES OF MCULIB ... 265
17.2. MCULIB PRINTF IMPLEMENTATION ... 265
17.3. BUILDING LIBGLOSS .. 269

18. VIRTUAL HOSTING ... 270

19. ADVANCED PROGRAMMING OPTIMIZATION ... 272

19.1. OPTIMIZATION OPTIONS ... 272

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page x

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

19.1.1. Options for Code Size Optimization ... 272
19.1.2. Options for Code Speed Optimization ... 273
19.1.3. Options to Remove Unused Sections ... 275
19.1.4. Options to Use EX9 Optimization .. 275
19.1.5. Options to Use IFC Optimization ... 276
19.1.6. Notice on Some Optimization Options .. 277
19.1.7. Optimization Levels and Default Applied Options .. 278

19.2. EX9 OPTIMIZATION .. 280
19.2.1. Export and Import ... 281
19.2.2. EX9 Table Shared by Multiple Separately-linked Program Modules .. 281

19.3. IFC (INLINE FUNCTION CALL) OPTIMIZATION .. 283
19.4. ZERO OVERHEAD LOOP OPTIMIZATION ... 285

19.4.1. Zero Overhead Loop Optimization Limitations ... 286
19.4.2. Disable ZOL Optimization for Specific Functions or Loops ... 287

19.5. INSTRUCTION MAX/MIN OF PERFORMANCE EXTENSION .. 289
19.6. PRIMITIVE DATA TYPE "INT" .. 290
19.7. ADDRESSING SPACE FOR PROGRAMS .. 292

19.7.1. Small Data Area and Relaxation ... 292
19.7.2. Code Models... 295

19.8. LINK TIME OPTIMIZATION IN GCC ... 296
19.8.1. Using LTO .. 296
19.8.2. Notice When Applying LTO .. 296

19.9. FUNCTION WITH VARIABLE NUMBER OF ARGUMENTS .. 297
19.10. INLINE ASSEMBLY PROGRAMMING .. 299

19.10.1. General ... 299
19.10.2. Symbolic Operand Name .. 300
19.10.3. Clobber List .. 301
19.10.4. Read-write Operand .. 302
19.10.5. Constraint Modifier "&" ... 303
19.10.6. Volatile ... 304
19.10.7. Andes-specific Constraints .. 305

APPENDIX ... 306

PROGRAMMING TIPS ... 306
Move libc.a to the beginning of text section ... 306
Display register information and debug on reset by GDB commands ... 307

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page xi

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

List of Tables
TABLE 1. INSTRUCTIONS SPECIFIC TO ANDES V3 TOOLCHAIN IMPLEMENTATION VERSIONS .. 3
TABLE 2. ISA EXTENSIONS AND SUPPORTED ANDESCORES ... 4
TABLE 3. DEPRECATED PSEUDO-INSTRUCTIONS ... 37
TABLE 4. SIZE AND BYTE ALIGNMENT OF PRIMITIVE DATA TYPES ... 41
TABLE 5. MAPPING OF C PRIMITIVE DATA TYPES ... 43
TABLE 6. ANDES GPRS WITH ABI USAGE CONVENTION .. 44
TABLE 7. ANDES FPRS WITH ABI USAGE CONVENTION ... 52
TABLE 8. ANDES PREDEFINED MACROS .. 55
TABLE 9. OBSOLETE PREDEFINED MACROS .. 59
TABLE 10. INTRINSICS FOR LOAD/STORE .. 90
TABLE 11. INTRINSICS FOR READ/WRITE SYSTEM AND USR REGISTERS... 91
TABLE 12. MISCELLANEOUS INTRINSICS ... 91
TABLE 13. INTRINSICS FOR PE1 INSTRUCTIONS .. 94
TABLE 14. INTRINSICS FOR PE2 INSTRUCTIONS .. 95
TABLE 15. INTRINSICS FOR STRING .. 95
TABLE 16. INTRINSICS FOR FPU .. 95
TABLE 17. INTRINSICS FOR TLBOP ... 96
TABLE 18. INTRINSICS FOR SATURATION ISA ... 96
TABLE 19. INTRINSICS FOR INTERRUPTION ... 97
TABLE 20. INTRINSICS FOR COP INSTRUCTIONS .. 98
TABLE 21. ACCESSING SYSTEM REGISTERS ... 237
TABLE 22. INSTRUCTION TRANSLATION ON/OFF ... 237
TABLE 23. TLBOP SUBTYPES .. 238
TABLE 24. CCTL SUBTYPES ... 241
TABLE 25. THREE CODE SIZE OPTIMIZATION LEVELS OF -OS .. 272
TABLE 26. TWO LOOP UNROLLING OPTIMIZATION ... 273
TABLE 27. DEFAULT APPLIED GCC OPTIONS AT EACH OPTIMIZATION LEVEL .. 278

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page xii

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

List of Figures
FIGURE 1. ABI2 STACK FRAME SCENARIO .. 46
FIGURE 2. ABI2 STACK FRAME LAYOUT ... 47
FIGURE 3. FUNCTION PROLOGUE FOR STACK FRAME CONSTRUCTION ... 48
FIGURE 4. FUNCTION EPILOGUE FOR STACK FRAME DESTRUCTION .. 48
FIGURE 5. ABI2 SAMPLE OF SIMPLE FUNCTION STACK FRAME ... 50
FIGURE 6. ABI2 SAMPLE OF CALLING A FUNCTION WITH ARGUMENTS ... 51
FIGURE 7. ABI2 SAMPLE OF CALLING A VARIADIC FUNCTION.. 51
FIGURE 8. STACK FRAME COMPARISON BETWEEN ABI2 AND ABI2FP+ ... 53
FIGURE 9. PRINTF IMPLEMENTATION ON ANDES EVALUATION BOARD AND ON USERS’ BOARDS .. 268

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page xiii

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Typographical Convention Index

Document Element Font Font Style Size Color

Normal text Georgia Normal 12 Black

Command line, source
code or file paths

Lucida Console Normal 11 Indigo

VARIABLES OR
PARAMETERS IN COMMAND
LINE, SOURCE CODE OR
FILE PATHS

LUCIDA CONSOLE BOLD + ALL-CAPS 11 INDIGO

Deprecated
instructions

Lucida Console Normal 11
Dimmed
Indigo

Note or warning Georgia Normal 12 Red

Hyperlink Georgia Underlined 12 Blue

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 1

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

1. Overview

Andes toolchain is part of Andes Board Support Package (BSP) and AndeSight™, an integrated

development environment for software development. It is mainly used for compiling, assembling,

and linking users’ C/C++ and assembly programs and generating executables of AndeStar™,

Andes’ 16/32-bit mixable instruction set architecture. For detailed information about AndeSight

and AndeStar, please refer to AndeSight User Manual and AndeStar Instruction Set

Architecture Manual.

Andes toolchain is built from GNU, thus the options of gcc, as, and ld are inherited. In addition

to GNU-based options, Andes specific options are provided for some unique features such as

performance and code size tradeoff of AndeStar.

Andes library support includes glibc, uClibc, Newlib and MCUlib. Glibc and uClibc are for

OS-based applications and the other two are for non-OS applications. Newlib is an open source

project and C library intended for use on embedded systems library. Based on Newlib, MCUlib is

a library with Andes optimization enhancement for MCU applications and small code size.

This document focuses on the usages of compiler and assembler for toolchains of ISA V3. For

toolchains based on ISA V1 or V2, please refer to Andes Programming Guide for ISA V1 and V2.

The following outlines the structure of this document:

 Chapter 2, 3 and 4 are simplified descriptions of AndeStar and basic usage of toolchains.

 Chapter 5, 6, and 7 describe the pseudo-ops, pseudo-instructions, and macros.

Programmers can manage and write assembly with these capabilities.

 Chapter 8 describes Application Binary Interface (ABI).

 Chapter 9 describes Andes specific features.

 Chapter 10 describes Andes C language extension for interrupt service routine.

 Chapter 11 describes ROM patching approaches.

 Chapter 12 describes Andes intrinsic functions for programming respectively.

 Chapter 13 describes user and kernel space. OS or system programmers should find this

chapter important when configuring Andes CPUs for interruption, MMU, ICE, local

memory, and so on.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 2

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

 Chapter 14 describes the static and dynamic linking and loading.

 Chapter 15 introduces a simple mechanism to generate linker scripts.

 Chapter 16 describes the object file format.

 Chapter 17 describes Andes MCUlib.

 Chapter 18 depicts Virtual Hosting.

 Chapter 19 introduces advanced programming optimization in coding level.

1.1. What’s New Since BSP v4.0
The following summarizes the major enhancements in V3-family toolchains since BSP v4.0:

 Command line options: The compilation options, including compiler, assembler and

linker options, since BSP v4.0 all follow GNU usage conventions. Post-optimization options

along with some options in earlier versions are deprecated. Please refer to Section 2.2 and

its subsections for the up-to-date options.

 Operating System Reserved Registers $p0 and $p1: For toolchains of BSP v4.0 or

later versions, $p0 and $p1 are not recommended for use in user code. Please refer to

Section 3.2.5 for usage notes about the two registers.

 Application binary interface (ABI): A new ABI “ABI2FP+” is defined for floating-point

toolchains (v3f and v3s) since BSP v4.0. For details, please refer to Section 8.2.2.

 Andes pre-defined macros: Starting from BSP v4.0, the names of Andes pre-defined

macros are revised for conforming to the GCC coding conventions. See Section 9.2 for a

complete list of updated Andes pre-defined macros and Section 9.2.1 for the deprecated list.

 Virtual Hosting: The Virtual Hosting support is implemented in standard library rather

than in AICE controller program (ICEman). Please see Chapter 18 for details.

 More syntax checking:

 The second operand of pseudo instruction “la” now can only accept symbol reference.

Using immediate value is invalid and reported as an error.

 In the assembly macro definition, you have to use “\” character as prefix to evaluate

arguments. See Section 7.2 for details.

 The constant suffix (e.g., “L”, “UL”) is used in C language. If it appears in assembly code,

the assembler will help to report error.

 Compiler now is able to report more warnings if there may be potential issues in users’

programs.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 3

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

2. Getting Started

2.1. Andes Instruction Set Architecture and Instructions
Andes defines three versions of baseline instruction set, denoted by the version numbers 1 to 3.

Basically the later versions are the upgrade and extension of the previous versions. This

document is specialized for programming with ISA V3 family, including v3, v3j, v3f, v3s and v3m

toolchains. You may refer to Table 1 for instructions specific to each Andes V3 toolchain

implementation version and Table 2 for extended instruction sets and their supported

AndesCores.

Table 1. Instructions Specific to Andes V3 Toolchain Implementation Versions

AndeStar ISA Features Andes Toolchain Implementation Versions

Name Reference v3 v3j v3f v3s v3m

Baseline V3 AndeStar ISA Architecture Manual    

Baseline

V3m/*V3m+
AndeStar ISA V3m Specification 

Reduced_Regs

(16 registers)

AndeStar ISA Architecture Manual

  

STRING    

PE1    

PE2    

SP

floating-point AndeStar ISA FPU Extension

Manual

  

DP

floating-point
 

DSP extension AndeStar DSP ISA Extension

Specification

   

ZOL    
* V3m+ ISA is a V3m ISA plus additional instructions for even better code size compaction when the code size

optimization option “-Os2” or “-Os3/-Os” is applied. For V3m+ processors, please use the V3m toolchain and
add “–march=v3m+” to both compiler and linker options. AndeSight IDE users can select chip profiles for V3m+
CPU cores to enable the option “–march=v3m+”.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 4

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Table 2. ISA Extensions and Supported AndesCores

AndeStar ISA

Extension
Reference Supported AndesCores

Audio
AndeStar Instruction Set Architecture

Audio Extension Manual
N968, N1068

FPU
AndeStar Instruction Set Architecture

FPU Extension Manual
N1068, N1337, N15, D1088, D15

COP_ISA
AndeStar Instruction Set Architecture

Coprocessor Extension Manual
N1068, N1337, D1088

Saturation
AndeStar Saturation Arithmetic ISA

Extension Specification
N968, N1068, N1337, N15, D1088,

D15

DSP extension

and ZOL
AndeStar DSP ISA Extension Specification D1088, D15

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 5

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

2.2. Command Line Options
Environment variable $PATH is suggested to include the path to Andes GNU toolchain

executables. For example,

mypc> PATH=/home/users/bsp412/nds32le-elf-newlib-v3/bin:$PATH

mypc> echo $PATH

/home/users/bsp412/nds32le-elf-newlib-v3/bin:/bin:/usr/bin

2.2.1. Compiler Options

To get a list of all supported options, use command:
mypc> nds32le-elf-gcc ––help

Usage: nds32le-elf-gcc [options] file...

Options:

-pass-exit-codes Exit with highest error code from a phase

--help Display this information

--target-help Display target specific command line options

--help={common|optimizers|params|target|warnings|[̂]{joined|separate|undocumented}}[,...]

Display specific types of command line options

(Use '-v --help' to display command line options of sub-processes)

--version Display compiler version information

-dumpspecs Display all of the built in spec strings

-dumpversion Display the version of the compiler

-dumpmachine Display the compiler's target processor

-print-search-dirs Display the directories in the compiler's search

path

-print-libgcc-file-name Display the name of the compiler's companion

library

-print-file-name=<lib> Display the full path to library <lib>

-print-prog-name=<prog> Display the full path to compiler component

<prog>

-print-multiarch Display the target's normalized GNU triplet, used

as a component in the library path

-print-multi-directory Display the root directory for versions of libgcc

-print-multi-lib Display the mapping between command line options

and multiple library search directories

-print-multi-os-directory Display the relative path to OS libraries

-print-sysroot Display the target libraries directory

-print-sysroot-headers-suffix Display the sysroot suffix used to find headers

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 6

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

-Wa,<options> Pass comma-separated <options> on to the

assembler

-Wp,<options> Pass comma-separated <options> on to the

preprocessor

-Wl,<options> Pass comma-separated <options> on to the linker

-Xassembler <arg> Pass <arg> on to the assembler

-Xpreprocessor <arg> Pass <arg> on to the preprocessor

-Xlinker <arg> Pass <arg> on to the linker

-save-temps Do not delete intermediate files

-save-temps=<arg> Do not delete intermediate files

-no-canonical-prefixes Do not canonicalize paths when building relative

prefixes to other gcc components

-pipe Use pipes rather than intermediate files

-time Time the execution of each subprocess

-specs=<file> Override built-in specs with the contents of

<file>

-std=<standard> Assume that the input sources are for <standard>

--sysroot=<directory> Use <directory> as the root directory for headers

and libraries

-B <directory> Add <directory> to the compiler's search paths

-v Display the programs invoked by the compiler

-### Like -v but options quoted and commands not

executed

-E Preprocess only; do not compile, assemble or link

-S Compile only; do not assemble or link

-c Compile and assemble, but do not link

-o <file> Place the output into <file>

-pie Create a position independent executable

-x <language> Specify the language of the following input

files.

Permissible languages include: c c++ assembler

none 'none' means revert to the default behavior

of guessing the language based on the file's

extension

Options starting with -g, -f, -m, -O, -W, or --param are automatically passed on to

the various sub-processes invoked by nds32le-elf-gcc. In order to pass other options

on to these processes the -W<letter> options must be used.

For target specific options, enter:
mypc> nds32le-elf-gcc ––target-help

The following options are target specific:

-EB Generate code in big-endian mode.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 7

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

-EL Generate code in little-endian mode.

-G<number> Put global and static data smaller than <number>

bytes into a special section (on some targets)

-m16-bit Generate 16-bit instructions.

-malign-functions Align function entry to 4 byte.

-malways-align Always align function entry, jump target and return

address.

-march= Specify the name of the target architecture.

-mcache-block-size= Specify the size of each cache block, which must be a power

of 2 between 4 and 512.

-mcmodel= Specify the address generation strategy for code model.

-mcmov Generate conditional move instructions.

-mconfig-fpu= Specify a fpu configuration value from 0 to 7; 0-3 is as

FPU spec says, and 4-7 is corresponding to 0-3.

-mconfig-mul= Specify configuration of instruction mul: fast1, fast2

or slow. The default is fast1.

-mconfig-register-ports= Specify how many read/write ports for n9/n10 cores. The

value should be 3r2w or 2r1w.

-mcpu= Specify the cpu for pipeline model.

-mctor-dtor Enable constructor/destructor feature.

-mex9 Use special directives to guide linker doing ex9

optimization.

-mext-dsp Generate DSP extension instructions.

-mext-fpu-dp Generate double-precision floating-point instructions.

-mext-fpu-fma Generate floating-point multiply-accumulation

instructions.

-mext-fpu-sp Generate single-precision floating-point instructions.

-mext-perf Generate performance extension instructions.

-mext-perf2 Generate performance extension version 2 instructions.

-mext-string Generate string extension instructions.

-mext-zol Insert the hardware loop directive.

-mfloat-abi= Specify if floating point hardware should be used. The

valid value is : soft, hard.

-mfp-as-gp Force performing fp-as-gp optimization.

-mfull-regs Use full-set registers for register allocation.

-mhw-abs Generate hardware abs instructions

-mifc Use special directives to guide linker doing ifc

optimization.

-minnermost-loop Insert the innermost loop directive.

-misr-vector-size= Specify the size of each interrupt vector, which must be

4 or 16.

-mload-store-opt Enable load store optimization.

-mmemory-model= Specify the memory model, fast or slow memory.

-mno-fp-as-gp Forbid performing fp-as-gp optimization.

-mprint-stall-cycles Print stall cycles due to structural or data dependencies.

It should be used with the option '-S'. Note that stall

cycles are determined by the compiler's pipeline model

and it may not be precise.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 8

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

-mreduced-regs Use reduced-set registers for register allocation.

-mregrename Enable target dependent register rename

optimization.

-mrelax Guide linker to relax instructions.

-mrelax-hint Insert relax hint for linker to do relaxation.

-msoft-fp-arith-comm

-munaligned-access

Enable operand commutative for soft floating

Enable unaligned word and halfword accesses to packed

data.

-mv3push Generate v3 push25/pop25 instructions.

-mvh Enable Virtual Hosting support.

Known floating-point ABIs (for use with the -mfloat-abi= option):

 hard soft

Known floating-point number of registers (for use with the -mconfig-fpu= option):

 0 1 2 3 4 5 6 7

Known arch types (for use with the -march= option):

 v2 v2j v3 v3f v3j v3m v3m+ v3s

Known cmodel types (for use with the -mcmodel= option):

 large medium small

Known cpu types (for use with the -mcpu= option):

 d10 d1088 d1088-fpu d1088-spu d15 d15f d15s e8 e801 e830 n10 n1033 n1033-fpu

 n1033-spu n1033a n1068 n1068-fpu n1068-spu n1068a n1068a-fpu n1068a-spu n12

 n1213 n1233 n1233-fpu n1233-spu n13 n1337 n1337-fpu n1337-spu n15 n15f n15s

 n6 n650 n7 n705 n8 n801 n820 n9 n903 n903a n968 n968a s8 s801 s830 sn8 sn801

NOTE: If you specify the options “-mcmodel”, “-mvh”, or “-mext-zol” for compilation, use GCC

or G++ to link programs and apply these options for linking as well.

2.2.2. Assembler Options

To get a list of all supported options, use command:
mypc> nds32le-elf-as ––help

Usage: nds32le-elf-as [option...] [asmfile...]

Options:

-a[sub-option...] Turn on listings

Sub-options [default hls]:

c Omit false conditionals.

d Omit debugging directives.

h Include high-level source.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 9

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

l Include assembly.

m Include macro expansions.

n Omit forms processing.

s Include symbols.

=FILE List to FILE (must be last sub-option).

--alternate Initially turn on alternate macro syntax.

-D Produce assembler debugging messages.

--defsym SYM=VAL Define symbol SYM to given value.

--execstack Require executable stack for this object.

--noexecstack Don't require executable stack for this object.

-f Skip whitespace and comment preprocessing.

-g --gen-debug Generate debugging information.

--gstabs Generate STABS debugging information.

--gstabs+ Generate STABS debug info with GNU extensions.

--gdwarf-2 Generate DWARF2 debugging information.

--help Show this message and exit.

--target-help Show target specific options.

-I DIR Add DIR to search list for .include directives.

-J Don't warn about signed overflow.

-K Warn when differences altered for long displacements.

-L,--keep-locals Keep local symbols (e.g. starting with `L').

-M,--mri Assemble in MRI compatibility mode.

-maie-conf <*.aie> Set Andes Copilot supported mata file

--MD FILE Write dependency information in FILE (default none).

-nocpp Ignored.

-o OBJFILE Name the object-file output OBJFILE (default a.out).

-R Fold data section into text section.

--statistics Print various measured statistics from execution.

--strip-local-absolute Strip local absolute symbols.

--traditional-format Use same format as native assembler when possible.

--version Print assembler version number and exit.

-W --no-warn Suppress warnings.

--warn Don't suppress warnings.

--fatal-warnings Treat warnings as errors.

--itbl INSTTBL Extend instruction set to include instructions

matching the specifications defined in file INSTTBL.

-w Ignored.

-X Ignored.

-Z Generate object file even after errors.

--listing-lhs-width Set the width in words of the output data column of

the listing.

--listing-lhs-width2 Set the width in words of the continuation lines of

the output data column; ignored if smaller than the

width of the first line.

--listing-rhs-width Set the max width in characters of the lines from the

source file.

--listing-cont-lines Set the maximum number of continuation lines used for

the output data column of the listing.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 10

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

NDS32 specific command line options:

-mel, -EL or -little Produce little endian data.

-meb, -EB or -big Produce big endian data.

-O1 Optimize for performance.

-Os Optimize for space.

-cpu or -mcpu=<cpuname> CPU is <cpuname>.

-mno-fp-as-gp-relax Suppress fp-as-gp relaxation for this file

-mb2bb-relax Back-to-back branch optimization

-mno-all-relax Suppress all relaxation for this file

-mace=<shrlibfile> Support user defined instruction extension

-mcop0=<shrlibfile> Support coprocessor 0 extension

-mcop1=<shrlibfile> Support coprocessor 1 extension

-mcop2=<shrlibfile> Support coprocessor 2 extension

-mcop3=<shrlibfile> Support coprocessor 3 extension

-march=<arch name> Assemble for architecture <arch name> which could be

v3, v3j, v3m, v3m+, v3f, v3s, v2, v2j, v2f, v2s

-mbaseline=<baseline> Assemble for baseline <baseline> which could be v2,

v3, v3m

-mfpu-freg=<freg> Specify a FPU configuration

<freg>

0: 8 SP / 4 DP registers

1: 16 SP / 8 DP registers

2: 32 SP / 16 DP registers

3: 32 SP / 32 DP registers

-mabi=<abi> Specify a abi version <abi> could be v1, v2, v2fp,

v2fpp

-m[no-]mac Enable/Disable Multiply instructions support

-m[no-]div Enable/Disable Divide instructions support

-m[no-]16bit-ext Enable/Disable 16-bit extension

-m[no-]dx-regs Enable/Disable d0/d1 registers

-m[no-]perf-ext Enable/Disable Performance extension

-m[no-]perf2-ext Enable/Disable Performance extension 2

-m[no-]string-ext Enable/Disable String extension

-m[no-]reduced-regs Enable/Disable Reduced Register configuration

(GPR16) option

-m[no-]audio-isa-ext Enable/Disable AUDIO ISA extension

-m[no-]fpu-sp-ext Enable/Disable FPU SP extension

-m[no-]fpu-dp-ext Enable/Disable FPU DP extension

-m[no-]fpu-fma Enable/Disable FPU fused-multiply-add instructions

-m[no-]dsp-ext Enable/Disable DSP extension

-m[no-]zol-ext Enable/Disable hardware loop extension

-mall-ext Turn on all extensions and instructions support

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 11

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

2.2.3. Linker Options

To get a list of all supported options, use command:
mypc> nds32le-elf-ld --help

Usage: nds32le-elf-ld [option] file…

Options:

-a KEYWORD Shared library control for HP/UX

compatibility

-A ARCH, --architecture ARCH Set architecture

-b TARGET, --format TARGET Specify target for following input files

-c FILE, --mri-script FILE Read MRI format linker script

--build-id[=STYLE] Generate build ID note

-d, -dc, -dp Force common symbols to be defined

-e ADDRESS, --entry ADDRESS Export all dynamic symbols

--no-export-dynamic Undo the effect of --export-dynamic

-EB Link big-endian objects

-EL Link little-endian objects

-f SHLIB, --auxiliary SHLIB Auxiliary filter for shared object symbol

table

-F SHLIB, --filter SHLIB Filter for shared object symbol table

-g Ignored

-G SIZE, --gpsize SIZE Small data size (if no size, same as --shared)

-h FILENAME, -soname FILENAME Set internal name of shared library

-I PROGRAM, --dynamic-linker

PROGRAM

Set PROGRAM as the dynamic linker to use

-l LIBNAME, --library LIBNAME Search for library LIBNAME

-L DIRECTORY, --library-path

DIRECTORY

Add DIRECTORY to library search path

--sysroot=<DIRECTORY> Override the default sysroot location

-m EMULATION Set emulation

-M, --print-map Print map file on standard output

-n, --nmagic Do not page align data

-N, --omagic Do not page align data, do not make text

readonly

--no-omagic Page align data, make text readonly

-o FILE, --output FILE Set output file name

-O Optimize output file

-plugin PLUGIN Load named plugin

-plugin-opt ARG Send arg to last-loaded plugin

-flto Ignored for GCC LTO option compatibility

-flto-partition= Ignored for GCC LTO option compatibility

-fuse-ld= Ignored for GCC linker option compatibility

-Qy Ignored for SVR4 compatibility

-q, --emit-relocs Generate relocations in final output

-r, -i, --relocatable Generate relocatable output

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 12

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

-R FILE, --just-symbols FILE Just link symbols (if directory, same as

--rpath)

-s, --strip-all Strip all symbols

-S, --strip-debug Strip debugging symbols

--strip-discarded Strip symbols in discarded sections

--no-strip-discarded Do not strip symbols in discarded sections

-t, --trace Trace file opens

-T FILE, --script FILE Read linker script

--default-script FILE, -dT Read default linker script

-u SYMBOL, --undefined SYMBOL Start with undefined reference to SYMBOL

--unique [=SECTION] Don't merge input [SECTION | orphan] sections

-Ur Build global constructor/destructor tables

-v, --version Print version information

-V Print version and emulation information

-x, --discard-all Discard all local symbols

-X, --discard-locals Discard temporary local symbols (default)

--discard-none Don't discard any local symbols

-y SYMBOL, --trace-symbol

SYMBOL

Trace mentions of SYMBOL

-Y PATH Default search path for Solaris compatibility

-(, --start-group Start a group

-), --end-group End a group

--accept-unknown-input-arch Accept input files whose architecture cannot

be determined

--no-accept-unknown-input-arch Reject input files whose architecture is

unknown

--as-needed Only set DT_NEEDED for following dynamic libs

if used

--no-as-needed Always set DT_NEEDED for dynamic libraries

mentioned on the command line

-assert KEYWORD Ignored for SunOS compatibility

-Bdynamic, -dy, -call_shared Link against shared libraries

-Bstatic, -dn, -non_shared,

-static

Do not link against shared libraries

-Bsymbolic Bind global references locally

-Bsymbolic-functions Bind global function references locally

--check-sections Check section addresses for overlaps

(default)

--no-check-sections Do not check section addresses for overlaps

--copy-dt-needed-entries Copy DT_NEEDED links mentioned inside DSOs

that follow

--no-copy-dt-needed-entries Do not copy DT_NEEDED links mentioned inside

DSOs that follow

--cref Output cross reference table

--defsym SYMBOL=EXPRESSION Define a symbol

--demangle [=STYLE] Demangle symbol names [using STYLE]

--embedded-relocs Generate embedded relocs

--fatal-warnings Treat warnings as errors

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 13

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

--no-fatal-warnings Do not treat warnings as errors (default)

-fini SYMBOL Call SYMBOL at unload-time

--force-exe-suffix Force generation of file with .exe suffix

--gc-sections Remove unused sections (on some targets)

--no-gc-sections Don't remove unused sections (default)

--print-gc-sections List removed unused sections on stderr

--no-print-gc-sections Do not list removed unused sections

--hash-size=<NUMBER> Set default hash table size close to <NUMBER>

--help Print option help

-init SYMBOL Call SYMBOL at load-time

-Map FILE Write a map file

--no-define-common Do not define Common storage

--no-demangle Do not demangle symbol names

--no-keep-memory Use less memory and more disk I/O

--no-undefined Do not allow unresolved references in object

files

--allow-shlib-undefined Allow unresolved references in shared

libraries

--no-allow-shlib-undefined Do not allow unresolved references in shared

libs

--allow-multiple-definition Allow multiple definitions

--no-undefined-version Disallow undefined version

--default-symver Create default symbol version

--default-imported-symver Create default symbol version for imported

symbols

--no-warn-mismatch Don't warn about mismatched input files

--no-warn-search-mismatch Don't warn on finding an incompatible library

--no-whole-archive Turn off --whole-archive

--noinhibit-exec Create an output file even if errors occur

-nostdlib Only use library directories specified on the

command line

--oformat TARGET Specify target of output file

--print-output-format Print default output format

-qmagic Ignored for Linux compatibility

--reduce-memory-overheads Reduce memory overheads, possibly taking much

longer

--relax Reduce code size by using target specific

optimizations

--no-relax Do not use relaxation techniques to reduce code

size

--retain-symbols-file FILE Keep only symbols listed in FILE

-rpath PATH Set runtime shared library search path

-rpath-link PATH Set link time shared library search path

-shared, -Bshareable Create a shared library

-pie, --pic-executable Create a position independent executable

--sort-common

[=ascending|descending]

Sort common symbols by alignment [in specified

order]

--sort-section name|alignment Sort sections by name or maximum alignment

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 14

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

--spare-dynamic-tags COUNT How many tags to reserve in .dynamic section

--split-by-file [=SIZE] Split output sections every SIZE octets

--split-by-reloc [=COUNT] Split output sections every COUNT relocs

--stats Print memory usage statistics

--target-help Display target specific options

--task-link SYMBOL Do task level linking

--traditional-format Use same format as native linker

--section-start

SECTION=ADDRESS

Set address of named section

-Tbss ADDRESS Set address of .bss section

-Tdata ADDRESS Set address of .data section

-Ttext ADDRESS Set address of .text section

-Ttext-segment ADDRESS Set address of text segment

-Trodata-segment ADDRESS Set address of rodata segment

-Tldata-segment ADDRESS Set address of ldata segment

--unresolved-symbols=<method> How to handle unresolved symbols. <method>

is: ignore-all, report-all,

ignore-in-object-files,

ignore-in-shared-libs

--verbose [=NUMBER] Output lots of information during link

--version-script FILE Read version information script

--version-exports-section

SYMBOL

Take export symbols list from .exports, using

SYMBOL as the version.

--dynamic-list-data Add data symbols to dynamic list

--dynamic-list-cpp-new Use C++ operator new/delete dynamic list

--dynamic-list-cpp-typeinfo Use C++ typeinfo dynamic list

--dynamic-list FILE Read dynamic list

--warn-common Warn about duplicate common symbols

--warn-constructors Warn if global constructors/destructors are

seen

--warn-multiple-gp Warn if the multiple GP values are used

--warn-once Warn only once per undefined symbol

--warn-section-align Warn if start of section changes due to

alignment

--warn-shared-textrel Warn if shared object has DT_TEXTREL

--warn-alternate-em Warn if an object has alternate ELF machine

code

--warn-unresolved-symbols Report unresolved symbols as warnings

--error-unresolved-symbols Report unresolved symbols as errors

--whole-archive Include all objects from following archives

--wrap SYMBOL Use wrapper functions for SYMBOL

--ignore-unresolved-symbol

SYMBOL

Unresolved SYMBOL will not cause an error or

warning

NDS32 specific command line options:

-z common-page-size=SIZE Set common page size to SIZE

-z defs Report unresolved symbols in object files.

-z execstack Mark executable as requiring executable stack

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 15

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

-z max-page-size=SIZE Set maximum page size to SIZE

-z muldefs Allow multiple definitions

-z noexecstack Mark executable as not requiring executable

stack

--m[no-]fp-as-gp Disable/enable fp-as-gp relaxation

--mexport-symbols=FILE Exporting symbols in linker script

V3 only command line options:

--m[no-]ex9 Disable/enable link-time EX9 relaxation

--mexport-ex9=FILE Export EX9 table after linking

--mimport-ex9=FILE Import Ex9 table for EX9 relaxation

--mupdate-ex9 Update existing EX9 table

--mex9-limit=NUM Maximum number of entries in ex9 table

--mex9-loop-aware Avoid generate EX9 instruction inside loop

--m[no-]ifc Disable/enable link-time IFC optimization

--mifc-loop-aware Avoid generate IFC instruction inside loop

Please pay attention to the following two NDS32-specific commands:
--mfp-as-gp It’s for data affinity optimization. Set $fp as $gp plus an offset to

use more code density instructions such as lwi37.fp and
swi37.fp.

--mexport-symbols This option functions the same as the deprecated option
--mgen-symbol-ld-script. It generates a linker script format
file which saves all symbols for ROM patch to use for linking.

Linker options specialized for V3 targets are involved with either EX9 or IFC optimization.

Please refer to Section 19.2 or 19.3 for detailed descriptions.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 16

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

3. NDS32 Assembly Language

This chapter is intended to provide an outline and some hints for NDS assembly language. For

more details about assembly programming, please consult AndeStar Instruction Set

Architecture Manual, demo code in the package and Using as (GNU Assembly Manual).

3.1. General Syntax
Use “#” at column 1 and “!” anywhere in the line except inside quotes. Start a comment at the

end of line.

Multiple instructions in a line are allowed though not recommended and should be separated by

“;”.

An integer can be specified in decimal, octal (prefixed with 0), hexadecimal (prefixed with 0x), or

binary (prefixed with 0b) format. For example, 128, #128, 0200, #0200, 0x80, #0x80,

0b10000000, and #0b10000000 are all identical. The leading “#” is optional.

A floating number uses “e” and “E” to for exponential portion, “f” and “F” for single precision

floating point constant, and “d” and “D” for double precision floating point constant; for example,

0f12.345 or 0d1.2345e12.

Assembler is not case-sensitive in general except user defined label. For example, “jral F1” is

different from “jral f1” while it is the same as “JRAL F1”.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 17

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

3.2. Registers
Please refer to AndeStar Instruction Set Architecture Manual in the package for detailed

information.

3.2.1. General Purpose Registers (GPR)

There are 32 32-bit general purpose registers:

1. All $r0-$r31 are 5-bit addressable.

2. 4-bit addressable ones are $h0-$h15, which are mapped to $r0-$r11 and $r16-$r19

correspondingly.

3. 3-bit addressable ones are $o0-$o7, which are mapped to $r0-$r7 correspondingly.

3.2.2. Accumulators d0 and d1

There are 2 64-bit accumulators:

1. High and low portion of $d0 and $d1 can be accessed separately as $d0.hi, $d0.lo,

$d1.hi, and $d1.lo.

2. There are instructions for moving them from and to GPRs.

NOTE: Though $d0 or $d1 instruction still work for assembly programming, compiler of BSP

v4.0 or later versions has no longer generated them.

3.2.3. Instruction Implied Registers

Some 16-bit instructions use implied registers:

1. Register $r5: BEQS38 and BNES38.

2. Register $ta ($r15) : SLTI45, SLTSI45, SLT45, SLTS45, BEQZS8, and BNEZS8.

3. Register $fp ($r28): LWI37 and SWI37.

4. Register $gp ($r29): LBI.GP, LHI.GP, LWI.GP, SBI.GP, SHI.GP, and SWI.GP.

5. Register $sp ($r31): LWI37.SP and SWI37.SP.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 18

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

3.2.4. Assembler Reserved Register $ta

Register $ta ($r15) is used

1. by assembler to translate pseudo instructions. Thus, its content may get corrupted.

2. to pass the starting address of called function at entry to the called function if PIC mode

is specified. Thus, its content must be properly handled.

3. as implied register. Thus, its content must be preserved between SLT{S}{I}45 and

B[EQ|NE]QZS8 instruction pairs.

3.2.5. Operating System Reserved Registers $p0 and $p1

Registers $p0 and $p1 are used by operating system as scratch registers. Since interrupt can

occur at any user space instruction, its content may not be persistent from instruction to

instruction.

$p0 and $p1 are not recommended for use in user code. Here are some reminders if you want to

use the two registers in your code:

1. To avoid the corruption of $p0 and $p1, lower the interrupt level to 0 if you want to do

context switching in the interrupt.

2. You may use shadow $sp, rather than $p0 or $p1, as scratch registers when switching

between user-mode and superuser-mode.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 19

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

3.3. Missing Operand
In most cases, assembler accepts instructions with missing operands. When this occurs, the

default value of the missing operand is used.

3.3.1. Load/Store Instructions

Coded As Meaning Accepted As

l{b|h|w}i rt5,[ra5] l{b|h|w}i rt5,[ra5+0]

l{b|h}si rt5,[ra5] l{b|h}si rt5,[ra5+0]

l{b|h|w}i.p rt5,[ra5] <invalid>

l{b|h}si.p rt5,[ra5] <invalid>

s{b|h|w}i rt5,[ra5] s{b|h|w}i rt5,[ra5+0]

s{b|h|w}i.p rt5,[ra5] <invalid>

l{b|h|w} rt5,[ra5+rb5] l{b|h|w} rt5,[ra5+rb5<<0]

l{b|h}s rt5,[ra5+rb5] l{b|h}s rt5,[ra5+ rb5<<0]

s{b|h|w} rt5,[ra5+rb5] s{b|h|w} rt5,[ra5+ rb5<<0]

l{b|h|w} rt5,[ra5] l{b|h|w}i rt5,[ra5+0]

l{b|h}s rt5,[ra5] l{b|h}si rt5,[ra5+0]

l{b|h|w}.p rt5,[ra5] <invalid>

l{b|h}s.p rt5,[ra5] <invalid>

s{b|h|w} rt5,[ra5] s{b|h|w}i rt5,[ra5+0]

s{b|h|w}.p rt5,[ra5] <invalid>

l{b|h|w}.p rt5,[ra5],rb5 l{b|h|w}.p rt5,[ra5],rb5<<0

l{b|h}s.p rt5,[ra5],rb5 l{b|h}s.p rt5,[ra5],rb5<<0

s{b|h|w}.p rt5,[ra5],rb5 s{b|h|w}.p rt5,[ra5],rb5<<0

lmw.{a|b}{d|i}{m}

rt5,[ra5],rb5
lmw.{a|b}{d|i}{m} rt5,[ra5],rb5,0

smw.{a|b}{d|i}{m}

rt5,[ra5],rb5
smw.{a|b}{d|i}{m} rt5,[ra5],rb5,0

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 20

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Coded As Meaning Accepted As

lwup rt5,[ra5+rb5] lwup rt5,[ra5+ rb5<<0]

lwup rt5,[ra5] <invalid>

swup rt5,[ra5+rb5] swup rt5,[ra5+ rb5<<0]

swup rt5,[ra5] <invalid>

l{w|h|b}i333 rt3,[ra3] l{w|h|b}i333 rt3,[ra3+0]

s{w|h|b}i333 rt3,[ra3] s{w|h|b}i333 rt3,[ra3+0]

lwi37 rt3,[$fp] lwi37 rt3,[$fp+0]

swi37 rt3,[$fp] swi37 rt3,[$fp+0]

3.3.2. Branch Instructions

Coded As Meaning Accepted As

jral rb5 jral $lp,rb5

ret ret $lp

ret5 ret5 $lp

3.3.3. Special Instructions

Coded As Meaning Accepted As

llw rt5,[ra5+rb5] llw rt5,[ra5+ rb5<<0]

llw rt5,[ra5] <invalid>

scw rt5,[ra5+rb5] scw rt5,[ra5+ rb5<<0]

scw rt5,[ra5] <invalid>

dprefi.d dprefst,[ra5] dprefi.d dprefst,[ra5+0]

dprefi.w dprefst,[ra5] dprefi.w dprefst,[ra5+0]

dpref dprefst,[ra5+rb5] dpref dprefst,[ra5+rb5<<0]

dpref dprefst,[ra5] Dprefi.w dprefst,[ra5+0]

msync msync 0

trap trap 0

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 21

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Coded As Meaning Accepted As

teqz ra5 teqz ra5, 0

tnez ra5 tnez ra5, 0

break break 0

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 22

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

4. Machine Instructions

4.1. 32/16-bit
Full machine instructions, 32-bit and/or 16-bit, can be specified by programmers directly. They

can be mixed with any restriction. By default compiler generates 32/16-bit mixed instructions,

but you can apply a compiler option –mno-16-bit to generate pure 32-bit instructions.

In general, instructions may get converted into corresponding 16/32-bit version depending on

compiler optimization level:

1. When –O0 or –Os is specified, a 32-bit instruction will get converted into its 16-bit

version whenever possible.

2. When–On (n=1-3), –Og or –Ofast is specified, a 16-bit instruction may get converted

back to its 32-bit version to fulfill alignment requirement.

4.2. Unaligned Data Handling
[l|s]mw instructions can be used to handle unaligned data accesses. The following focuses on

using [l|s]mw instructions for block moves like memcpy().

A loop of lmw.bim rb5,[ra5],rb5 and smw.bim rb5,[ra5],rb5 takes care of most content

except the remaining bytes which cannot be handled with a word. Compiler must handle the

“packed” structure this way since the only other way is to do it byte by byte. Here “packed”

means that member fields of the structure may not be aligned. In contrast, fields of a default

(non-packed) structure are aligned based on their types (namely, word field is aligned on word

boundary; half word field is aligned on half word boundary and so forth).

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 23

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

4.3. Endianness
Andes supports both big and little endian data storage although instructions only use big endian.

Here are two different ways to support it:

1. static setting only – OS finds the setting when loading ELF image and properly sets the

configuration in system register.

2. dynamic setting – instruction SETEND.B can be used to switch user space programs to

big endian mode and SETEND.L to switch the programs to little endian mode. Once

switched to different data endianness, all data access will be interpreted based on the

new endianness.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 24

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

5. Pseudo-ops

5.1. List of Pseudo-ops

5.1.1. GNU Default Pseudo-ops Supporting Sections
.data subsec for data section.

Default of subsec is 0, which is created automatically.

.text subsec for code section.

Default of subsec is 0, which is created automatically.

.section for user defined sections.

5.1.2. Andes Pseudo-ops Supporting Sections

.sdata_d for double-word sized (8-byte) small data items.

.sdata_w for word sized (4-byte) small data items.

.sdata_h for half-word sized (2-byte) small data items.

.sdata_b for byte sized small data items.

.sbss_d for double-word sized (8-byte) small data items.

.sbss_w for word sized (4-byte) small data items.

.sbss_h for half-word sized (2-byte) small data items.

.sbss_b for byte sized small data items.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 25

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

5.1.3. GNU Default Pseudo-ops Supporting ELF
.align type,fill,max for alignment.

type defines power-of-2 alignment.

for example, type=2 gives alignment to word (4-byte) aligned

boundary.

If fill is not specified, 0 will be filled for data sections and nop

or nop16 will be filled for code sections.

.ascii for string constant.

.asciz for zero-terminated string constant.

.byte for byte data.

.2byte for 2-byte data. (alignment is not forced)

.4byte for 4-byte data. (alignment is not forced)

.8byte for 8-byte data. (alignment is not forced)

.double for double precision floating data.

.eject for page break in listings.

.else for conditional assembly.

.elseif for conditional assembly.

.end for terminating assembly.

.endm for terminating macro expansion.

.endr for terminating iterative assembly.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 26

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

.endfunc for terminating a function.

.endif for conditional assembly.

.equ symbol,expr for defining symbol to value expr.

.equiv symbol,expr same as .equ except duplicate is an error.

.err for signaling assembling error.

.error string for signaling assembling error.

.exitm for exiting macro expansion.

.extern symbol ignored - only for programming discipline.

.fail expr for generating error (expr<500) or warning.

.file string for starting new logical file.

.fill rept,size,value for filling data chunk.

.float expr for single precision floating data.

.func symbol,label for issuing debugging information.

.global symbol for exporting symbol.

.globl symbol same as .global.

.hidden names for changing visibility of names.

.hword expr for half-word sized data.

.ident for tagging.

.if expr for conditional assembly.

.ifdef symbol for conditional assembly.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 27

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

.ifc str1,str2 for conditional assembly.

.ifeq expr for conditional assembly.

.ifeqs str1,str2 for conditional assembly.

.ifge expr for conditional assembly.

.ifgt expr for conditional assembly.

.ifle expr for conditional assembly.

.iflt expr for conditional assembly.

.ifnc str1,str2 for conditional assembly.

.ifndef symbol for conditional assembly.

.ifnotdef symbol same as ifndef.

.ifne expr for conditional assembly.

.ifnes str1,str2 for conditional assembly.

.incbin file,skip,count for including binary file.

.include file for including source file.

.int expr for integer sized data.

.internal names for changing visibility of names.

.irp symbol,values for starting iterative assembly.

.list for generating listings.

.long expr for integer sized data.

.macro name,params for defining macros.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 28

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

.nolist for stopping generating listings.

.octa expr for 16-byte sized data.

.org expr,fill for moving location counter forward.

.previous for swapping ELF sections.

.popsection for popping ELF sections.

.print string for printing string in listings.

.protected names for changing visibility of names.

.psize line,col for defining page size of listings.

.purgem name for purging the macro definition of name.

.pushsection

name,subsec

for pushing the current section (and subsection) onto the top of

the section stack and replacing them with name and subsection.

.quad expr for 8-byte sized data.

.rept count for starting iterative assembly.

.sbttl string for printing subtitle line in listings.

.set symbol,expr for defining symbol to value expr.

.short expr for word sized data.

.single expr for single precision floating data.

.size symbol,expr for specifying size of a symbol.

.sleb128 expr for SLEB128 data.

.skip size,fill for size-byte data chunk.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 29

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

.space size,fill same as .skip.

.string string same as .asciz

.struct expr for switching to absolute section.

.subsection subsec for swapping current subsection to subsec.

.title string for printing title line in listings.

.type name,desc for defining type of the symbol.

.uleb128 expr for ULEB128 data.

.version string for creating .note section content.

.vtable_entry

table,offset

for finding/creating a symbol table and creating a

VTABLE_ENTRY relocation with an addend of offset.

.vtable_inherit

child,parents

for finding the symbol child and finding/creating the symbol

parent and then creating a VTABLE_INHERIT relocation for the

parent whose addend is the value of the child symbol.

.warning string for printing warning in listings.

.word expr for word sized data.

Please note that .hword, .half, and .short are referring to 16-bit data; .int, .long,

and .word are referring to 32-bit data; .quad is for 64-bit data; and .octa is for 128-bit data.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 30

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

5.1.4. Andes Pseudo-ops Supporting ELF
.half for half-word sized (2-byte) data.

.word for word sized (4-byte) data.

.dword for double-word sized (8-byte) data.

.qword for quadruple-word sized (16-byte) data.

.off_16bit to start generating only 32-bit instructions.

.restore_16bit to restore a setting of starting/stopping generating only 32-bit

instructions.

.pic for generating PIC code. This must appear before the first

assembly instruction. (first assembly line preferred)

.debugsym for debugging symbols.

.little for setting little endian data storage.

.big for setting big endian data storage.

5.1.5. Data Declaration Pseudo-ops
.half and .hword: forced 2-byte alignment.

.int, .float, .long, .single,

and .word:

forced 4-byte alignment.

.double and .dword: forced 8-byte alignment.

.qword: forced 16-byte alignment.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 31

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

If you do not want forced alignments, use
.dc.h or .2byte for .half and .hword.

.dc, .dc.l, and .dc.w or .4byte for .int, .long, and .word.

.dc.s or .4byte for .float and .single.

.dc.d or .8byte for .double.

.dc.x for extended (12-byte) floating number.

5.1.6. Space Declaration Pseudo-ops

.dcb, .dcb.d, .dcb.h, dcb.l, dcb.s, dcb.w, and .dcb.x.

.ds, .ds.d, .ds.h, .ds.l, ds.s, and .ds.w.

.space.

.skip.

.zero.

.fill – will fill the data area with specified fill value.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 32

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

6. Pseudo-instructions

In addition to hardware instructions, there are many software instructions defined to make

assembly programming much easier. These are pseudo-instructions. This chapter makes a

detailed list of pseudo-instructions along with descriptions.

NOTICE:

While some pseudo-instructions are reserved for internal processing only, some dimmed in

this chapter are deprecated and not recommended. For a summary of deprecated

pseudo-instructions and reasons for deprecation, please refer to Table 3.

6.1. List of Pseudo-instructions
1. load 32-bit value/address
li rt5,imm_32 loads 32-bit integer into register rt5.

sethi rt5,hi20(imm_32) and then ori rt5,
rt5,lo12(imm_32)

la rt5,var loads 32-bit address of var into register rt5.

sethi rt5,hi20(var) and then ori rt5,rt5,lo12(var)

2. load/store variables
l.{bhw} rt5,var loads value of var into register rt5.

sethi $ta,hi20(var) and then l{bhw}i
rt5,[$ta+lo12(var)]

l.{bh}s rt5,var loads value of var into register rt5.

sethi $ta,hi20(var) and then l{bh}si
rt5,[$ta+lo12(var)]

l.{bhw}p rt5,var,inc loads value of var into register rt5 and increments $ta by
amount inc.
la $ta,var and then l{bhw}i.bi rt5,[$ta],inc

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 33

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

l.{bhw}pc rt5,inc continues loading value of var into register rt5 and

increments $ta by amount inc.
l{bhw}i.bi rt5,[$ta],inc.

l.{bh}sp rt5,var,inc loads value of var into register rt5 and increments $ta by

amount inc.

la $ta,var and then l{bh}si.bi rt5,[$ta],inc

l.{bh}spc rt5,inc continues loading value of var into register rt5 and

increments $ta by amount inc.

l{bh}si.bi rt5,[$ta],inc.

s.{bhw} rt5,var stores register rt5 to var.

sethi $ta,hi20(var) and then s{bhw}i
rt5,[$ta+lo12(var)]

s.{bhw}p rt5,var,inc stores register rt5 to var and increments $ta by amount inc.

la $ta,var and then s{bhw}i.bi rt5,[$ta],inc

s.{bhw}pc rt5,inc continues storing register rt5 to var and increments $ta by

amount inc.
s{bhw}i.bi rt5,[$ta],inc.

For 64-bit extension, the {ls}.ws{p} and {ls}.d{p} are defined similarly.

3. negation
not rt5,ra5 alias of nor rt5,ra5,ra5

neg rt5,ra5 alias of subri rt5,ra5,0

4. branch to label
br rb5 alias of jr rb5

depending on how it is assembled. It is translated into “jr5

rb5” or “jr rb5”

b label branch to label.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 34

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

depending on how it is assembled. It is translated into “j8

label”, “j label”, or “la $ta,label; br $ta”

bge{s} rt5,ra5,label compares the unsigned (signed) value of rt5 and that of ra5.

If the value of rt5 is greater than or equal to that of ra5, jump

to label.

bgt{s} rt5,ra5,label compares the unsigned (signed) value of rt5 and that of ra5.

If the value of rt5 is greater than that of ra5, jump to label.

blt{s} rt5,ra5,label compares the unsigned (signed) value of rt5 and that of ra5.

If the value of rt5 is less than that of ra5, jump to label.

ble{s} rt5,ra5,label compares the unsigned (signed) value of rt5 and that of ra5.

If the value of rt5 is less than or equal to that of ra5, jump to

label.

beq rt5,ra5,label is a hardware instruction. Please refer to AndeStar Instruction

Set Architecture Manual.

beqz rt5,label is a hardware instruction. Please refer to AndeStar Instruction

Set Architecture Manual.

bne rt5,ra5,label is a hardware instruction. Please refer to AndeStar Instruction

Set Architecture Manual.

bnez rt5,label is a hardware instruction. Please refer to AndeStar Instruction

Set Architecture Manual.

bgez rt5,label is a hardware instruction. Please refer to AndeStar Instruction

Set Architecture Manual.

bgtz rt5,label is a hardware instruction. Please refer to AndeStar Instruction

Set Architecture Manual.

bltz rt5,label is a hardware instruction. Please refer to AndeStar Instruction

Set Architecture Manual.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 35

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

blez rt5,label is a hardware instruction. Please refer to AndeStar Instruction

Set Architecture Manual.

Note: Since there are hardware instruction beq and bne but no bge{s}, bgt{s}, ble{s},

and blt{s}, the missing ones are pseudo-code instructions. The implementation will

then get wider range. That is, beq and bne have only 15-bit range but others (beqz,

bgez, bgtz, blez, bltz, and bnez) have 17-bit range.

5. branch and link to function name
bral rb5 alias of jral br5

depending on how it is assembled. It is translated into “jral5

rb5” or “jral rb5”.

bal fname depending on how it is assembled. It is translated into “jal

fname” or “la $ta,fname; bral $ta”.

call fname call function fname

same as “bal fname”.

bgezal rt5,fname is a hardware instruction. Please refer to AndeStar Instruction

Set Architecture Manual.

bltzal rt5,fname is a hardware instruction. Please refer to AndeStar Instruction

Set Architecture Manual.

6. move
move rt5,ra5 for 16-bit, it is mov55 rt5,ra5

for no 16-bit, it is ori rt5,ra5,0

move rt5,var same as l.w rt5,var

move rt5,imm_32 same as li rt5,imm_32

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 36

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

7. push/pop
pushm ra5,rb5 pushes the contents of registers from ra5 to rb5 into stack.

push ra5 pushes the content of register ra5 into stack. (same as pushm

ra5,ra5)

push.d var pushes the value of double-word variable var into stack.

push.w var pushes the value of word variable var into stack.

push.h var pushes the value of half-word variable var into stack.

push.b var pushes the value of byte variable var into stack.

pusha var pushes the 32-bit address of variable var into stack.

pushi imm_32 pushes the 32-bit immediate value into stack.

popm ra5,rb5 poppes top of stack values into registers ra5 to rb5.

pop rt5 poppes top of stack value into register. (same as popm rt5,rt5)

pop.d var,ra5 poppes the value of double-word variable var from stack using the
register ra5 as the second scratch register. (the first scratch register
is $ta)

pop.w var,ra5 poppes the value of word variable var from stack using the register
ra5.

pop.h var,ra5 poppes the value of half-word variable var from stack using the
register ra5.

pop.b var,ra5 poppes the value of byte variable var from stack using the register
ra5.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 37

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

6.1.1. Deprecated Pseudo-instructions

The table below lists deprecated pseudo-instructions for quick reference.

Table 3. Deprecated Pseudo-instructions

Category
Deprecated

Pseudo-instructions
Reasons for Deprecation

load/store variables

l.{bhw}p rt5,var,inc

l.{bhw}pc rt5,inc

l.{bh}sp rt5,var,inc

l.{bh}spc rt5,inc

s.{bhw}p rt5,var,inc

s.{bhw}pc rt5,inc

These instructions must depend on

$r15.

branch to label

beq rt5,ra5,label

beqz rt5,label

bne rt5,ra5,label

bnez rt5,label

bgez rt5,label

bgtz rt5,label

bltz rt5,label

blez rt5,label

These instructions can be replaced

by identical hardware instructions.

branch and link to function name
bgezal rt5,fname

bltzal rt5,fname

These instructions can be replaced

by identical hardware instructions.

push/pop

push.d var

push.w var

push.h var

push.b var

pusha var

pushi imm_32

pop.d var, ra5

pop.w var, ra5

pop.h var, ra5

pop.b var, ra5

The functionalities to push/pop

from/to variables are not supported

anymore.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 38

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

6.2. Built-in Function Operators
The following function operators can be used in any assembly instructions:

1. hi20(var) is the high 20-bit of address of var.

2. lo12(var) is the low 12-bit of address of var.

3. sda(var) is the 15-bit signed offset of var into small data area.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 39

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

7. Macros

7.1. Create Macros in Assembly Code

When writing assembly code, you can define macros to generate assembly outputs. This is an

efficient way to repeat similar statements or simplify varying syntax for complicated conditions.

For example, the below definition specifies a macro “sum” to put a sequence of numbers into

memory:
.macro sum from,to

 .long \from

.if \to-\from

 sum "(\from+1)",\to

.endif

.endm

With that definition, “sum 0,5” is equivalent to this assembly code fragment:
.long 0

.long 1

.long 2

.long 3

.long 4

.long 5

Another example provided below shows how a macro is used to simplify varied syntax for

different conditions.
.macro load_imm rt5, imm32

.if ((\imm32 <= 0x7ffff) && (\imm32 >= -0x80000))

 movi \rt5,\imm32

.elseif (\imm32 & 0x00000fff == 0x0)

 sethi \rt5,hi20(\imm32)

.else

 sethi \rt5,hi20(\imm32)

 ori \rt5,\rt5,lo12(\imm32)

.endif

.endm

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 40

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

With such definition, no matter what range the immediate value is, you just need to write the

“load_imm” macro and it will be expanded as appropriate instructions:

Macro Assembly Code

load_imm $r3,0x55 movi $r3,0x55

load_imm $r3,0x12345000 sethi $r3,0x12345

load_imm $r3,0x12345999 sethi $r3,0x12345 + ori $r3,$r3,0x999

7.2. Assembler Directives for Macros

The directives .macro and .endm allow you to define macros. The following descriptions give the

basic usages. For more details and other directives, please refer to GNU Assembly Manual Using

as.

.macro macname

.macro macname macargs ...

Begin the definition of a macro called macname. If your macro definition requires

arguments, specify their names after the macro name, separated by commas or spaces.

You can supply a default value for any macro argument by following the name with

“=deflt”. For example, these are valid .macro statements:

 .macro comm

Begin the definition of a macro called comm, which takes no arguments.

 .macro plus1 p, p1

 .macro plus1 p p1

Either statement begins the definition of a macro called plus1, which takes two

arguments; if you want to use arguments within the macro definition, you have to use

“\” character as prefix. In this case, use “\p” or “\p1” to evaluate the arguments.

 .macro reserve_str p1=0 p2

Begin the definition of a macro called reserve_str, with two arguments. The first

argument has a default value, but not the second. After the definition is complete, you

can call the macro either as “reserve_str a,b” (with “\p1” evaluating to a and “\p2”

evaluating to b), or as “reserve_str ,b” (with “\p1” evaluating as the default, in this

case “0”, and “\p2” evaluating to b).
.endm

Mark the end of a macro definition.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 41

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

8. Application Binary Interface (ABI)

The Andes architecture ABI defines the interface for compiled programs and assembled

programs running on Andes architecture to work jointly. The purpose of Andes architecture ABI

is to deliver high performance and binary compatibility. Section 8.1 describes the used data

types in programming and how they are presented on Andes architecture. Section 8.2 gives the

details of two types in Andes ABI.

8.1. Data Types

8.1.1. Byte Ordering

The byte ordering defines how the bytes that make up multi-byte data type are ordered in

memory. Andes architecture ABI supports both little-endian and big-endian byte ordering.

 Little-endian: The least significant byte of a data is stored at the lowest memory address.

 Big-endian: The least significant byte of a data is stored at the highest memory address.

8.1.2. Primitive Data Types

Table 4. Size and Byte Alignment of Primitive Data Types

Class Machine Type
Size

(in Byte)

Alignment

(in Byte)

Integer

Unsigned byte 1 1

Signed byte 1 1

Unsigned half word 2 2

Signed half word 2 2

Unsigned word 4 4

Signed word 4 4

Unsigned double word 8 8

Signed double word 8 8

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 42

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Class Machine Type
Size

(in Byte)

Alignment

(in Byte)

Floating Point

Single precision

(IEEE 754)
4 4

Double precision

(IEEE 754)
8 8

Pointer
Instruction Pointer 4 4

Data Pointer 4 4

8.1.3. Composite Data Types

Composite Data Types is a collection of primitive data types and other composite data types that

can be used to construct a program.

8.1.3.1 Array Type

Array Type is a sequence of homogenous data elements (i.e. of the same primitive data

type). The alignment of an array is determined by the alignment of its elements’ data type.

The size of an array is the multiplication of the size of its data type and the number of its

elements.

8.1.3.2 Aggregate and Union Type

An aggregate is a data type that data elements are laid out sequentially in memory. A union

is a data type that stores each of its elements at the same memory address at different

times.

The alignment of an aggregate or a union is equal to the alignment of its most-aligned

component. The size of an aggregate is the smallest multiple of its alignment that is

sufficient to hold all of its elements when they are laid out. The size of a union is the

smallest multiple of its alignment that is sufficient to hold the union’s largest element.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 43

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

8.1.3.3 Bit-field Type

A bit-field is a member of an aggregate or union which defines an integral object with

specified of bits. The layout of bit-fields within an aggregate is defined by the appropriate

language binding. When there are unused portions of such a member that are sufficient for

the following member to start at its natural alignment, the following member can use the

unallocated portions.

8.1.4. C Language Mapping of Andes Platform

Table 5. Mapping of C Primitive Data Types

C/C++ Type Machine Type

[singed] char Signed byte

unsigned char Unsigned byte

[signed] short Signed half word

unsigned short Unsigned half word

[signed] int Signed word

unsigned int Unsigned word

[signed] long Signed word

unsigned long Unsigned word

[signed] long long Signed double word

unsigned long long Unsigned double word

size_t Unsigned word

float Single precision (IEEE 754)

double Double precision (IEEE 754)

long double Double precision (IEEE 754)

float _Complex Two Single precision (IEEE 754)

double _Complex Two Double precision (IEEE 754)

long double _Complex Two Double precision (IEEE 754)

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 44

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

8.2. Calling Convention
For code generation efficiency, Andes introduces two ABI types: ABI2 and ABI2FP+. The ABI2 is

the convention for integer toolchains, which uses General Purpose Registers (GPRs) for

computations on all primitive types. Based on ABI2, ABI2FP+ is provided for floating-point

toolchains, in which programmers have extra Floating Point Registers (FPRs) and more

instructions to do floating-point computation. Please see the following sections for

characteristics of the two ABI types.

8.2.1. ABI2 (for v3, v3j and v3m Toolchains)

8.2.1.1 Registers

There are 32 32-bit General Purpose Registers (GPRs) for Andes instruction set

architecture. Basically they are classified into caller-saved and callee-saved registers. The

following table lists the Andes GPRs commented with the ABI2 usage convention.

Table 6. Andes GPRs with ABI Usage Convention

Register Synonym Comments

$r0 $a0 Argument / Return / Saved by caller

$r1 $a1 Argument / Return / Saved by caller

$r2 $a2 Argument / Saved by caller

$r3 $a3 Argument / Saved by caller

$r4 $a4 Argument / Saved by caller

$r5 $a5 Argument / Saved by caller

$r6 $s0 Saved by callee

$r7 $s1 Saved by callee

$r8 $s2 Saved by callee

$r9 $s3 Saved by callee

$r10 $s4 Saved by callee

$r11 $s5 Saved by callee

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 45

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Register Synonym Comments

$r12 $s6 Saved by callee

$r13 $s7 Saved by callee

$r14 $s8 Saved by callee

$r15 $ta Temporary register for assembler

$r16 $t0 Trampoline register / Saved by caller

$r17 $t1 Saved by caller

$r18 $t2 Saved by caller

$r19 $t3 Saved by caller

$r20 $t4 Saved by caller

$r21 $t5 Saved by caller

$r22 $t6 Saved by caller

$r23 $t7 Saved by caller

$r24 $t8 Saved by caller

$r25 $t9 Saved by caller

$r26 $p0 Saved by caller

$r27 $p1 Saved by caller

$r28 $fp Frame pointer / Saved by callee

$r29 $gp Global pointer / Saved by callee

$r30 $lp Link pointer / Saved by callee

$r31 $sp Stack pointer

As commented in the table, some registers are also taken for special usage, such as passing

argument or being stack frame pointer. They are summarized below and will be described

in subsequent sections:

 Argument Passing: $r0~$r5.

 Return Value: $r0~$r1.

 Temporary Register: $r15. This is reserved for assembler instruction expansion.

 Trampoline Register: $r16. This is used as static chain register for nested function.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 46

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

 Frame Pointer: $r28. This could be used for stack frame adjustment.

 Global Pointer: $r29. This is used to access small data area.

 Link Pointer: $r30. This is to save return address.

 Stack Pointer: $r31. This is used for stack frame adjustment.

Caller-saved and callee-saved registers are as follows:

 Caller-saved registers: $r0~$r5, $r16~$r27.

 Callee-saved registers: $r6~$r10, $r11~$r14, $r28, $r29, $r30.

8.2.1.2 Stack Frame

Stack frame is very important during the function invocation. Whenever caller invokes

callee, the return address is automatically saved in $lp register, and then a corresponding

stack frame is created in memory to store local variables, spill registers, and pass

arguments. The stack is full-descending and each stack frame of a function is held by frame

pointer ($fp) and stack pointer ($sp) with 8-byte alignment. Figure 1 below exemplifies

such a scenario:

Figure 1. ABI2 Stack Frame Scenario

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 47

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Every stack frame is composed of 4 blocks: callee-saved area, local variables, duplicate

incoming arguments, and outgoing arguments. Each block is also 8-byte alignment, so

padding bytes may be needed. Note that the padding bytes in outgoing arguments block

are in different direction conforming to C language standards. See Figure 2 for the memory

layout of these 4 blocks within an ABI2 stack frame.

Figure 2. ABI2 Stack Frame Layout

Conceptually, function prologue and epilogue are in charge of stack frame construction and

destruction respectively. The register $sp will be adjusted to reserve a space for blocks and

the register $lp will be used to return to caller after callee is finished. If the compiler

option -fno-omit-frame-pointer is applied, the register $fp will also be involved in

stack frame creation to record the original $sp position.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 48

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

The followings illustrate the works in prologue and epilogue, with the option

-fno-omit-frame-pointer applied to show the detailed stack frame information:

 Prologue

1. Push callee-saved registers into stack. The caller’s frame pointer ($fp) and return

address ($lp) are also pushed if necessary.

2. Set frame pointer ($fp) to the base of current stack frame.

3. Calculate required size, and then adjust stack pointer ($sp) to the bottom of

current stack frame.

Figure 3. Function Prologue for Stack Frame Construction

 Epilogue

1. Adjust stack pointer back to the location where callee-saved registers are going to

be popped.

2. Pop callee-saved registers from stack to restore their content.

3. Use link pointer ($lp) to return to caller.

Figure 4. Function Epilogue for Stack Frame Destruction

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 49

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

8.2.1.3 Argument Passing and Return

Arguments are passed in GPRs and stack. The space of stacked arguments, which is the

outgoing arguments block of a stack frame, must be allocated by caller. The argument

passing strategy includes the following rules:

 GPRs $r0~$r5 are used to pass arguments.

 If the argument requires 8-byte alignment, assign the argument to the next even

register number.

 If the argument is a primitive type smaller than 4 bytes, it will be zero- or sign-extended

to 4 bytes.

 If GPRs $r0~$r5 are not sufficient to hold all arguments, the remaining ones will be

passed in the outgoing arguments block of caller’s stack frame. Then callee is able to

retrieve them by using $fp or $sp with offset calculation.

 If the argument is a composite type with a size that is not 4-byte aligned, it will be

rounded up to the closest multiple of 4 bytes.

 An argument that is not a primitive type can be assigned to both registers and the stack.

In this case, the first part of the argument is copied to the GPRs and the rest part of it to

the stack.

The function return value is determined by the type of the result:

 If the result is a primitive type,

1. For primitive type smaller than 4 bytes: the return value is zero- or sign-extended to

4 bytes and returned in $r0.

2. For 4-byte primitive type, the return value is returned in $r0.

3. For 8-byte primitive type, the return value is returned in $r0 and $r1.

 If the result is a composite type,

1. For the size that is not larger than 8 bytes, the return value follows the same rules

as when the result is a primitive type.

2. For the size that is larger than 8 bytes or undetermined by caller and callee, the

return value must be returned at a memory reference that is passed as an extra

argument when the function is called. In that case, the address for the result will be

placed in $r0 and the first argument will be passed in $r1.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 50

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Here is an example of how arguments are passed and how value is returned:

Note that for a function with variable size (variadic function), caller is able to pass

arguments like a normal function using GPRs and stack; callee is in charge of pushing

argument registers into stack so that all the nameless arguments appear to have been

passed consecutively in the memory for accessing. The callee must create an extra block,

which is also 8-byte alignment, to store nameless arguments that are passed via GPRs. An

example is given in Figure 7 in the next section.

8.2.1.4 Samples of ABI2

In this section, some C code fragments are presented as examples to show the memory

layout generated by compiler. These samples are all compiled with the compiler option

“-O0 -fno-omit-frame-pointer”.

 A simple case of a function stack frame: It only contains blocks of callee-saved area and

local variables. There is no need to duplicate incoming arguments or reserve a block for

outgoing arguments.

Figure 5. ABI2 Sample of Simple Function Stack Frame

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 51

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

 A case of calling a function with arguments: Figure 6 shows the necessary blocks of

each stack frame.

Figure 6. ABI2 Sample of Calling a Function with Arguments

 A case of variadic function: The nameless arguments are pushed into stack by callee.

Figure 7. ABI2 Sample of Calling a Variadic Function

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 52

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

8.2.2. ABI2FP+ (for v3s and v3f Toolchains)

8.2.2.1 Registers

In addition to the GPRs usage in ABI2, there are extra Floating Pointer Registers (FPRs)

and instructions for float/double computation in floating-point toolchain. It is helpful to

generate more efficient code. The following table lists the usage of those FPRs under the

ABI2FP+ convention.

Table 7. Andes FPRs with ABI Usage Convention

Register Comments

$fs0~$fs1

($fd0)
Argument / Return / Saved by caller

$fs2~$fs3

($fd1)
Argument / Saved by caller

$fs4~$fs5

($fd2)
Argument / Saved by caller

$fs6~$fs21

($fd3~$fd10)
Saved by callee

$fs22~$fs31

($fd11~$fd15)
Saved by caller

This table is incorporated with the GPRs table usage of ABI2 (Table 6). It is clear from

Table 7 that $fs0~$fs1 are also used to return float/double value of a function.

As for caller-saved and callee-saved registers, they are listed below:

 Caller-saved registers: $fs0~$fs5, $fs22~$fs31.

 Callee-saved registers: $fs6~$fs21.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 53

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

8.2.2.2 Stack Frame

The stack frame scenario of ABI2FP+ is almost the same as ABI2 except that there will be

FPRs in callee-saved area. Therefore, some FPRs are considered to be pushed into stack in

the prologue and their content will be restored in the epilogue. The difference of stack

frame between ABI2 and ABI2FP+ are illustrated in the figure below:

Figure 8. Stack Frame Comparison Between ABI2 and ABI2FP+

8.2.2.3 Argument Passing and Return

In ABI2FP+, arguments are passed in GPRs, FPRs, and stack. The rules of passing

arguments and return value are based on ABI2 strategy with some differences:

 Function arguments with floating-point primitive types such as “float” and “double”

will be passed in FPRs $fs0~$fs5; other primitive types are still passed in GPRs

$r0~$r5.

 If the argument requires 8-byte alignment, assign the argument to the next even

register number. Both GPR and FPR argument passing follows such a rule.

 An argument must be passed entirely in registers or entirely pushed on the stack.

 A function value of “float” will be returned in $fs0.

 A function value of “double” will be returned in $fs0~$fs1.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 54

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Here is an example of how arguments are passed under ABI2FP+:

In addition to the rules above, there is also a major difference between ABI2 and ABI2FP+

in functions with variable size (variadic function). As FPRs are involved in passing

arguments, it makes complexity, low performance and large code size of dealing with GPRs

and FPRs against arguments order if callee is in charge of pushing argument registers into

stack. Therefore, in the ABI2FP+, all the nameless arguments must be stored in outgoing

arguments block of a stack frame by caller so that callee is able to access them via stack

easily.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 55

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

9. Andes Specifics

9.1. Get PC
For most V3-family toolchains, you can use the instruction “MFUSR rt5,PC” to move PC to the

specified general purpose register rt5. However, for v3m toolchains, you must get PC through

the general way “JAL 4”, which stored the address of the next instruction into $lp. While this

works fine, it does cause penalty on hardware branch prediction since it simply throws the whole

prediction off balance.

9.2. Andes Predefined Macros
To see the default values of Andes predefined macros for a particular toolchain or to check if a

feature is enabled as default, issue the following command:

 $ nds32le-elf-gcc -E -dM - < /dev/null | grep NDS32

Predefined macros are very useful to determine which toolchain is used. The following lists the

macros defined for different toolchain settings or compilation flags:

Table 8. Andes Predefined Macros

Macro Name Description

__NDS32__

__nds32__
Defined on all Andes toolchains.

__NDS32_EB__ Defined if using big endian toolchains.

__NDS32_EL__ Defined if using little endian toolchains.

__NDS32_ABI_2__ Defined if using ABI 2.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 56

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Macro Name Description

__NDS32_ABI_2FP_PLUS__ Defined if using ABI2FP+.

__NDS32_ISA_V3__ Defined if using v3/v3j/v3s/v3f toolchains.

__NDS32_ISA_V3M__ Defined if using v3m toolchains.

__NDS32_REDUCED_REGS__
Defined if using GCC with the option to use reduced-set registers for

register allocation (-mreduced-regs).

__NDS32_16_BIT__
Defined if using GCC with the option to generate 16-bit instructions

(-m16-bit).

__NDS32_CMOV__
Defined if using GCC with the option to generate conditional move

instructions (-mcmov).

__NDS32_GP_DIRECT__
Defined if using GCC with the small or medium code model option

(–mcmodel=[small|medium]).

__NDS32_ISR_VECTOR_SIZE_4__
Defined if using GCC with the option to specify the size of each

interrupt vector as 4 bytes (-misr-vector-size=4).

__NDS32_ISR_VECTOR_SIZE_16__
Defined if using GCC with the option to specify the size of each

interrupt vector as 16 bytes (-misr-vector-size=16).

__NDS32_EXT_PERF__
Defined if using GCC with the option to generate performance

extension instructions (-mext-perf).

__NDS32_EXT_PERF2__
Defined if using GCC with the option to generate performance

extension version 2 instructions (-mext-perf2).

__NDS32_EXT_STRING__
Defined if using GCC with the option to generate string extension

instructions (-mext-string).

__NDS32_EXT_DSP__
Defined if using GCC with the option to generate DSP extension

instructions (-mext-dsp).

__NDS32_EXT_ZOL__
Defined if using GCC with the option to insert the hardware loop

directive (-mext-zol).

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 57

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Macro Name Description

__NDS32_EXT_FPU_SP__
Defined if using GCC with the option to generate single-precision

floating-point instructions (-mext-fpu-sp).

__NDS32_EXT_FPU_DP__
Defined if using GCC with the option to generate double-precision

floating-point instructions (-mext-fpu-dp).

__NDS32_EXT_FPU_FMA__
Defined if using GCC with the option to generate floating-point

multiply-accumulation instructions (-mext-fpu-fma).

__NDS32_EXT_FPU_CONFIG_0__

Defined if using GCC with the options to generate single-precision

floating-point instructions (-mext-fpu-sp) and to set the FPU

configuration value as 0 or 4 (-mconfig-fpu={0|4}). For details

about FPU configuration options, please refer to AndeStar

Instruction Set Architecture FPU Extension Manual.

__NDS32_EXT_FPU_CONFIG_1__

Defined if using GCC with the options to generate single-precision

floating-point instructions (-mext-fpu-sp) and to set the FPU

configuration value as 1 or 5 (-mconfig-fpu={1|5}). For details

about FPU configuration options, please refer to AndeStar

Instruction Set Architecture FPU Extension Manual.

__NDS32_EXT_FPU_CONFIG_2__

Defined if using GCC with the options to generate single-precision

floating-point instructions (-mext-fpu-sp) and to set the FPU

configuration value as 2 or 6 (-mconfig-fpu={2|6}). For details

about FPU configuration options, please refer to AndeStar

Instruction Set Architecture FPU Extension Manual.

__NDS32_EXT_FPU_CONFIG_3__

Defined if using GCC with the options to generate single-precision

floating-point instructions (-mext-fpu-sp) and to set the FPU

configuration value as 3 or 7 (-mconfig-fpu={3|7}). For details

about FPU configuration options, please refer to AndeStar

Instruction Set Architecture FPU Extension Manual.

__NDS32_EXT_FPU_DOT_E__

Defined if using GCC with the options to generate single-precision

floating-point instructions (-mext-fpu-sp) and to set the FPU

configuration value as 4, 5, 6, or 7 (-mconfig-fpu={4|5|6|7}).

For details about FPU configuration options, please refer to

AndeStar Instruction Set Architecture FPU Extension Manual.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 58

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

The following takes __NDS32_EXT_PERF__ as an example to help you understand the usages of

Andes predefined macros:

#if (__NDS32_EXT_PERF__)

 abs $r0, $r0

#else

 bgez $r0, .L1

 subri $r0, $r0, 0

.L1:

#endif

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 59

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

9.2.1. Deprecated Predefined Macros

The following macros, though still supported for backward compatibility, are NOT

recommended. They may be completely removed in the future:

Table 9. Obsolete Predefined Macros

Macro Name Notes

NDS32_EB

__NDS32_EB
Defined if using big endian toolchains.

NDS32_EL

__NDS32_EL
Defined if using little endian toolchains.

NDS32_ABI_2

__NDS32_ABI_2
Defined if using ABI 2.

NDS32_BASELINE_V3

__NDS32_BASELINE_V3
Defined if using v3/v3j/v3s/v3f toolchains.

NDS32_BASELINE_V3M

__NDS32_BASELINE_V3M
Defined if using v3m toolchains.

NDS32_REDUCE_REGS

__NDS32_REDUCE_REGS

Defined if using GCC with the option to use reduced-set registers for

register allocation (-mreduced-regs).

NDS32_EXT_PERF __NDS32_EXT_PERF
Defined if using GCC with the option to generate performance

extension instructions (-mext-perf).

NDS32_EXT_PERF2

__NDS32_EXT_PERF2

Defined if using GCC with the option to generate performance

extension version 2 instructions (-mext-perf2).

NDS32_EXT_STRING

__NDS32_EXT_STRING

Defined if using GCC with the option to generate string extension

instructions (-mext-string).

NDS32_EXT_FPU_SP

__NDS32_EXT_FPU_SP

Defined if using GCC with the option to generate single-precision

floating-point instructions (-mext-fpu-sp).

NDS32_EXT_FPU_DP

__NDS32_EXT_FPU_DP

Defined if using GCC with the option to generate double-precision

floating-point instructions (-mext-fpu-dp).

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 60

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

9.3. Crt0.S
The file crt0.S, in startup demo projects of Andes BSP package, contains the following

AndesCore™-specific components:

 the vector table for interruptions (including exceptions and interrupts),

 the interruption dispatch examples, and

 the low-level initialization for C programs.

The vector table and interruption dispatch examples show the dispatch handling from assembly

code to C functions for interrupts, useful exceptions, and error exceptions. You can modify the

dispatch grouping, function names and the function definitions for your own needs. An example

of changing dispatch grouping is that if a program is not intended to use the syscall exception, its

handler can be changed from calling syscall_handler() to error_exception_handler().

In addition, crt0.S also invokes a predefined low-level initialization macro named nds32_init

for the C compiler to support AndesCore features. The macro is enclosed between “Begin of

do-not-modify” and “End of do-not-modify” after the symbol _start. We strongly

recommend that you do not touch the enclosed code sequence to ensure the proper

program execution.

Predefined in the toolchains, the nds32_init macro can be invoked in assembly code by

including <nds32_init.inc> file. This macro is used to do the necessary startup initialization

for the C program and AndesCore features. The following bullets explain the initialization code

segment in nds32_init macro, including the special code sequence, the symbols used and their

meanings:

 Symbol _ITB_BASE_

The instruction sequence relating to _ITB_BASE_ is to initialize the instruction table register

$ITB (User-Special Register USR #28) with the value of _ITB_BASE_.

It is the base address of the instruction table used by ex9.it instruction. One usage of the

instruction table is as follows. When linker performs code size optimization, it automatically

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 61

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

assigns the value of _ITB_BASE_, fills the corresponding table with useful instructions, and

generates ex9.it.

 Symbol _SDA_BASE_

The instruction sequence relating to _SDA_BASE_ is to initialize the global data pointer

register $gp (r29) with the value of _SDA_BASE_.

It is the address in the middle of data sections. Linker places scalar data around it so that

they can be accessed efficiently by $gp-based load/store instructions and their addresses can

be calculated efficiently by $gp-based add instructions.

 Symbol _stack

The instruction sequence relating to _stack is to initialize the stack pointer register $sp

($r31) with the value of _stack. Since _stack is a common symbol used by GNU toolchains,

we follow its naming convention.

It is the starting address of the stack used by C compiler to pass function parameters, local

variables and return values. Linker obtains its value from the linker script. Since the stack

usually goes from high addresses to low addresses when doing function calls, the initial stack

address is normally set to the highest address of program data memory.

 FPU initialization

The instruction sequence is to initialize the FPU and coprocessor enable control register

$FUCOP_CTL and the floating-point control status register $FPCSR. It enables the

floating-point support with denormalized flush-to-zero mode for FPU-based toolchains.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 62

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

10. Andes C Language Extension for Interrupt Service Routine

(Not Supported on S801)

Normally, programmers can’t implement interrupt service routines in C language. This is

because the standard C language is not designed for this job and the design of C function

prologue and epilogue is not suitable for this task either. Unfortunately, implementing ISR in

assembly language is a tedious and error-prone work. To relieve your burden, Andes defines

three different syntaxes for system reset, interrupts and exceptions in C.

NOTE 1: Once Andes C language ISR is used, all ISR’s entry points should be defined by Andes C

language extension. Do not mix C language ISR with your assembly ISR unless you

really know how to do it.

NOTE 2: You need to set $IPC to $IPC +4 before returning from C-ISR syscall. That is, the

statement “ptr->ipc = ptr->ipc + 4” has to be added to your syscall function.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 63

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

10.1. Syntax for System Reset Handler
Prototype:
void NDS32ATTR_RESET(“<option_list>”) reset_hdlr(void);

<option_list> contains zero or more of the following separated by “;”
1. vectors=XXX
2. nmi_func=YYY
3. warm_func=ZZZ

NOTE: The NDS32ATTR_RESET(“…”) can be replaced by __attribute__((reset(“…”)))

macro. In this case, the prototype of system reset handler will be changed to –
void __attribute__((reset("<option_list>"))) reset_hdlr(void);

Functionality:

In Andes CPU core architecture, NMI, warm reset and cold reset share an interruption vector 0,

so special handling is necessary to distinguish one exception from another. Here Andes provides

a framework which can hide the low level interfacing detail of tedious assembly coding and let

you handle the real work in C language.

As soon as any of these exceptions occurs, the prologue of the reset handler generated by

compiler will detect the event and dispatch the control to specific handlers that you provide with

proper argument. Your handler will take over the control and do the specific job. When the job is

done, the handler can decide whether or not to return the control to the reset handler. When it

decides to return, an error code is used as the return value. This value can be 0 as OK or -1 as

fail. When the control goes back to the prologue of reset handler, it will either resume the

operation before exception or prepare to do cold reset depending on whether the return value

from the specific exception handler is 0 or -1.

Include File: nds32_isr.h

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 64

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Input & Keyword:
reset_hdlr Name of your reset handler function
reset Keyword to signify that reset_hdlr is a reset handler
vectors=XXX XXX is the total number of interruptions vectored entry point (Default: 16; 9

exception and 7 interrupt). This number is important since it is used to fill in

the default handler if you don’t define handlers for some vectors. For details,

please refer to AndeStar System Privilege Architecture Version 3 Manual.
nmi_func=YYY YYY is the name of NMI handler. (Default: NULL)
warm_func=ZZZ ZZZ is the name of warm reset handler. (Default: NULL)

Note:

 A reset handler is mandatory in a system.

 Upon system reset, you need to put the whole system to a known state in order to use high

level language like C. C language expects the .data section, .bss section and stack pointer are

initialized, so global, static and auto variables can be used. This means the jobs to initialize

DRAM, copy data from ROM to .data section and zero out .bss section in DRAM. The

problem is how to initialize DRAM in C without using DRAM as temporarily storage. The

followings are some guidelines –

 No auto and global variable can be used before DRAM is initialized.

 No ordinary C code can be used to initialize DRAM.

 Only constants and registers can be used.

 Special C macros are designed using inline assembly to do this job. Please reference the

C ISR example in Andes Board Support Package for these C macros.

 _nds32_init_mem(): the name of memory initialization function; called by 1st level reset

handler. You must implement this callback function if the memory in the target system needs

to be initialized by software. One of the examples of such memory is DRAM.

 Prototype: void __attribute__((no_prologue)) _nds32_init_mem(void);

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 65

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Prototype:
int nmi_func(int *reg_ptr)

Functionality:

This is the handler that you provide to handle a NMI exception. When an NMI exception occurs,

all general purpose registers are preserved to a buffer in stack and the starting address of this

buffer is passed to nmi_func as the input.

NOTE: The address of nmi_func handler is stored at the “.nds32_nmih” section.

Input:
reg_ptr Pointer to buffer containing values of all GPRs. The data is arranged in

ascending order in the buffer based on register number. Sequence:

 Reduced Register Set (16 registers mode): r0-r10, r15, r28-r31

 Normal Register Set (32 registers mode): r0-r31

Return Value:

0 means OK to resume the work before NMI occurs.

-1 means fail and the prologue of reset handler will reset the system.

It is also OK to hold the control and never return to the reset handler.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 66

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Prototype:
int warm_func(int *reg_ptr)

Functionality:

This is the handler that you provide to handle a warm reset exception. When a warm reset

exception occurs, all general purpose registers are preserved to a buffer in stack and the starting

address of this buffer is passed to warm_func as the input.

NOTE: The address of warm_func handler is stored at the “.nds32_wrh” section.

Input:
reg_ptr Pointer to buffer containing values of all GPRs. The data is arranged in

ascending order in the buffer based on register number. Sequence:

 Reduced Register Set (16 registers mode): r0-r10, r15, r28-r31

 Normal Register Set (32 registers mode): r0-r31

Return Value:

0 means OK to resume the work before warm reset occurs

-1 means fail and the control should reset the system

It is also OK to hold the control and never return to the reset handler.

NOTE:

The warm reset and NMI handlers are not mandatory. Please see the examples provided below

for format reference.
/* 8 interruptions; my_nmi as the name of NMI handler and no warm boot handler

*/

/* The following forms are equivalent */

void NDS32ATTR_RESET(“vectors=8;nmi_func=my_nmi;NULL”)

my_reset_hdlr(void);

void NDS32ATTR_RESET(“vectors=8;nmi_func=my_nmi”)

my_reset_hdlr(void);

void NDS32ATTR_RESET(“nmi_func=my_nmi;vectors=8”)

my_reset_hdlr(void);

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 67

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

/* 16 interruptions, no NMI and warm boot handler */

/* The following forms are equivalent */

void NDS32ATTR_RESET(“vectors=16”) my_reset_hdlr(void);

void NDS32ATTR_RESET(“”) my_reset_hdlr(void);

void NDS32ATTR_RESET() my_reset_hdlr(void);

10.1.1. Example
#include <nds32_isr.h> /* always include this file for ISR */

/*

my_reset() is a reset handler

Use my_nmi() to handle NMI

Use my_warmboot() to handle warm reset

To initiate memory, please implement the memory initiation function

“_nds32_init_mem()” mentioned earlier

*/

void NDS32ATTR_RESET(“vectors=16;nmi_func=my_nmi;warm_func=my_warmboot)

my_reset(void);

void my_reset(void)

{

/* OK to use C statements now */

/* No global or static variables can be used yet */

/* Auto variables are OK to use now */

/* Initialize system registers here or do it later */

/* Initialize cache regs here so .data and .bss can be initialized faster

*/

__cpu_init();

/* Initialize .data and .bss sections here, so global and static can be used

later */

__c_init() ;

/* OK to use global and static variables now */

/* Initialize cpu and peripheral here */

__soc_init();

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 68

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

/* Ready to call main() */

 main() ;

}

int my_warm_boot(int * pReg)

{

 /* Call error recovery handler to handle warm reset */

 return try_recover(pReg, NDS32_NUM_GPR) ;

}

int my_NMI(int * pReg)

{

#ifdef BLUE_SCREEN

 /* Show register values in blue screen */

 save_crash_info(pReg, NDS32_NUM_GPR) ;

 /* Never return */

 while (1) ;

#else

 /* Save register values in storage, so we can retrieve it later */

 save_crash_info(pReg, NDS32_NUM_GPR) ;

 /* Can’t recover, return fail so reset handler will do a cold boot */

 return 0 ;

#endif

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 69

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

10.2. Syntax for Interrupt Handlers
Prototypes:

 For save_caller_regs
void NDS32ATTR_ISR(“id=xxx[;save_caller_regs;<is_nested>]”)

intr_hdlr(int vid);

where save_caller_regs and <is_nested> can be omitted.

save_caller_regs means system will help save caller registers before entering this

user-defined handler. Typical interrupt service routines should use this mode.

 For save_all_regs
void NDS32ATTR_ISR(“id=xxx[;save_all_regs;<is_nested>]”)

intr_hdlr(int vid, NDS32_CONTEXT *ptr);

where <is_nested> can be omitted.

save_all_regs means system will help save all registers into stack before entering this

user-defined handler. This mode can be used for context-switching. The stack layout looks

like the following:

NOTE: In both prototypes, NDS32ATTR_ISR(“…”) can be replaced by

NDS32ATTR_INTERRUPT(“…”) or __attribute__((interrupt(“…”))) macro.

High Address

Low Address

Stack
growing
direction

all GPRs

implementation-dependent
registers

(e.g., floating point
registers)

NDS32_CONTEXT

ptr

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 70

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Functionality:

An interrupt handler can take care of asynchronous events whether it is triggered by hardware or

software. When you implement an interrupt handler, you must decide if this handler should run

to completion without disturbance. If the handler allows other events to interrupt current job, it

is said to be interruptible. Then, the next thing you must decide is when the handler will allow

this to happen. There are three cases that need different setting in hardware and Andes has

defined a parameter to control them. Please see below for the usage. An experienced

programmer may decide to set the handler to not_nested and handle the interrupt level and

global interrupt (GIE) manually.

As an aside, if advanced users want to have full control of all registers, combination of critical

type interrupt and inline assembly can be used to achieve this purpose.

NOTE: The addresses of all user-defined intr_hdlr handlers are stored at the “.nds32_jmptbl”

section.

Include File: nds32_isr.h
typedef struct

{

 int ipc;

 int ipsw;

} NDS32_CONTEXT;

Input & Keyword:
intr_hdlr Name of an interrupt service routine (ISR)
vid Vector ID
ptr A pointer to NDS32_CONTEXT
interrupt Keyword to signify intr_hdlr is an ISR
id=xxx A series of vector ID separated by comma (“,”); ID should be 0 to 63. This list

allows a handler to be shared by many vectors. At least one ID number is

required.
<is_nested> Set to nested, not_nested, ready_nested or critical. It can be omitted.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 71

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

(Default: nested)

 nested means this ISR is interruptible.

 not_nested means this ISR is not interruptible.

 ready_nested means this ISR is interruptible after PSW.GIE (global

interrupt enable) is set in the function body manually by

calling __nds32__setgie_en(). This is to allow ISR to finish some short

critical code before enabling interrupts.

 critical means this is a critical (and usually short) handler. This ISR is

not interruptible. (Note: This handler MUST be a leaf function with no

child function called. In addition, the handler is advised to be put in a

separate C source file and compiled with “–mno-ifc” but no “–mext-zol”

to prevent IFC_LP, LB, LE, and LC registers from being corrupted in this

critical handler.).

10.2.1. Example
#include <nds32_isr.h>

/* Timer handler; shared by vector 0, 1 and 2; save caller registers;

interruptible */

/* The following forms are equivalent */

void NDS32ATTR_ISR("id=0,1,2;save_caller_regs;nested")

timer_hdlr(int vid);

void NDS32ATTR_ISR("id=0,1,2;nested;save_caller_regs")

timer_hdlr(int vid);

void NDS32ATTR_ISR("id=0,1,2”)

timer_hdlr(int vid);

/* Default handler; shared by vector 4 and 5; save all registers; not

interruptible */

/* The following forms are equivalent */

void NDS32ATTR_ISR("id=4,5;save_all_regs;not_nested")

default_hdlr(int vid, NDS32_CONTEXT *ptr);

void NDS32ATTR_ISR("id=4,5;not_nested;save_all_regs")

default_hdlr(int vid, NDS32_CONTEXT *ptr);

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 72

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

10.3. Syntax for Exception Handlers
Prototype:

 For save_caller_regs
void NDS32ATTR_EXCEPT(“id=xxx[;save_caller_regs;<is_nested>]”)

excpt_hdlr(int vid);

where save_caller_regs and <is_nested> can be omitted.

save_caller_regs means system will help save caller registers before entering this

user-defined handler. Typical interrupt service routines should use this mode.

 For save_all_regs
void NDS32ATTR_EXCEPT(“id=xxx[;save_all_regs;<is_nested>]”)

excpt_hdlr(int vid, NDS32_CONTEXT *ptr);

where <is_nested> can be omitted.

save_all_regs means system will help save all registers into stack before entering this

user-defined handler. This mode can be used for context-switching. The stack layout looks

like the following:

High Address

Low Address

Stack
growing
direction

all GPRs

implementation-dependent
registers

(e.g., floating point
registers)

NDS32_CONTEXT

ptr

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 73

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

NOTE: In both prototypes, NDS32ATTR_EXCEPT(“…”) can be replaced by

NDS32ATTR_EXCEPTION(“…”) or __attribute__((exception(“…”))) macro.

Functionality:

An exception handler can take care of synchronous events, such as division by zero or unaligned

access, during the execution of software. When you implement an exception handler, you must

decide whether this handler should run to completion without disturbance. If the handler allows

other events to interrupt current job, it is said to be interruptible. Then, you must decide when

the handler allows this to happen. Just like interrupt handler, there is a parameter to control it

but exclude the usage of nested in the exception handler. Please see Section 10.3.1 for the usage.

An experienced programmer may decide to set the handler to not_nested and handle the

interrupt level and global interrupt (GIE) manually.

As an aside, if advanced users want to have full control of all registers, combination of critical

type interrupt and inline assembly can be used to achieve this purpose.

NOTE 1: The addresses of all user-defined excpt_hdlr handlers are stored at the

“.nds32_jmptbl” section.

NOTE 2: If a programmer needs to do the recovery, he or she should use the prototype for

save_all_regs. Upon the occurrence of an exception, the current state of execution is

saved in memory in struct NDS32_CONTEXT format. Then, a user-defined exception

handler is invoked. After the exception has been processed, there are 2 possible actions

to take by user-defined exception handler.

1. Skip the instruction that causes the exception: If it is System Call exception, the

user-defined exception handler should add "ptr->ipc = ptr->ipc + 4;" before

returning from syscall. For other exceptions, you need to know the size of the

instruction in order to skip it. In struct NDS32_CONTEXT, there is a field called ipc

which is the address that causes the exception. By looking at the contents there,

you can determine the size of the instruction there. Please see Section 10.3.1.1 for

an example that shows how to skip the instruction.

2. Resume the instruction that causes the exception: In this case, the user-defined

exception handler should just return.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 74

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Include File: nds32_isr.h

Input & Keyword:
excpt_hdlr Name of an exception handler
vid Vector ID
ptr A pointer to NDS32_CONTEXT
exception Keyword to signify excpt_hrld is an exception handler
id=xxx A series of vector ID separated by comma (“,”); ID should be 1 to 8. This list

allows a handler to be shared by many vectors. At least one ID number is

required.
<is_nested> Set to nested, not_nested, ready_nested or critical. It can be omitted.

(Default: not_nested)

 nested means this handler is interruptible.

 not_nested means this handler is not interruptible.

 ready_nested means this handler is interruptible after PSW.GIE (global

interrupt enable) is set in the function body manually by

calling __nds32__setgie_en(). This is to allow handler to finish some

short critical code before enabling interrupts.

 critical means this is a critical (and usually short) handler. This

handler is not interruptible. (Note: This handler MUST be a leaf function

with no child function called. In addition, the handler is advised to be put

in a separate C source file compiled with “–mno-ifc” but no “–mext-zol”

to prevent IFC_LP, LB, LE, and LC registers from being corrupted in this

critical handler..)

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 75

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

10.3.1. Example
#include <nds32_isr.h>

/* System call handler; ready_nested for you to enable GIE when you need.

*/

/* The following forms are equivalent */

void NDS32ATTR_EXCEPT("id=8;save_all_regs;nested")

syscall_hdlr(int vid, NDS32_CONTEXT *ptr);

void NDS32ATTR_EXCEPT("id=8;nested;save_all_regs")

 syscall_hdlr(int vid, NDS32_CONTEXT *ptr);

void NDS32ATTR_EXCEPT("id=8;save_all_regs")

 syscall_hdlr(int vid, NDS32_CONTEXT *ptr);

10.3.1.1 Example of Skipping the Instruction that Causes the Exception
void NDS32ATTR_EXCEPT("id=7;save_all_regs ready_nested;") ge_hdlr(int vid,

NDS32_CONTEXT *ptr)

{

 unsigned char inst;

/* Your exception handling code here. */

/* About to return now, and we want to skip the instruction. */

 inst = *((unsigned char*) ptr->ipc);

 if (inst>>7)

 {

 /* Bit[7]: 1 represent 16-bit instruction. */

 ptr->ipc += 2;

 }

 else

 {

 /* Bit[7]: 0 represent 32-bit instruction. */

 ptr->ipc += 4;

 }

 return;

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 76

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

10.4. Linker Options
It is a must to link your program with a library call libnds32_isr.a.

Linker option --defsym=_NDS32_VECTOR_BASE=expression can be used to override the

default base address, which is 0.

10.4.1. Linker Script
EXTERN(_NDS32_VECTOR_BASE) /* defined at the beginning of linker script */

PROVIDE (_NDS32_VECTOR_BASE = 0); /* defined inside SECTIONS */

. = _NDS32_VECTOR_BASE ;

.nds32_vector : { *(SORT_BY_NAME(.nds32_vector.*)) }

You can use linker option --defsym=symbol=expression to override the default base address

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 77

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

11. ROM Patching

Generally speaking, programs in ROM can’t be modified after the embedded system IC is taped

out. If one would like to upgrade features or fix some problems for programs in ROM, he

normally has to put the patch code into the flash memory so that the old implementation can be

replaced with the new one. This is known as ROM patching.

ROM patch can be applied through indirect call functions or function table mechanism. Indirect

call is an Andes C language extension specially for ROM patching. With the indirect call attribute

added to patchable functions and some modifications on the linker script, the code burnt to the

ROM has an indirection layer on the flash. When a function is being called, it will look up the

function table on the layer for its target address. ROM patching therefore can be achieved

through configurations on the function table.

Indirect call functions provide an easy implementation of ROM patching, yet its implementation

before BSP v4.1.2 has a strict limitation on the ROM and flash address space, i.e. ±16MB. If you

use a BSP version prior to v4.1.2 and have memory addressing beyond the limit, you’ll have to

resort to the other approach – function table mechanism.

The function table mechanism also applies ROM patches via an indirect layer. It has no

addressing limitation and is more portable using the standard C language and few GNU

extension. Yet its implementation for ROM patching is comparatively complicated because it

requires modifications on many parts of the program for adding the user-defined function table

and calling functions through the table.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 78

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

11.1. Indirect Call Functions

11.1.1. Implementation of Indirect Call Functions

The implementation requires modifications on the following parts:

1. Program code or header file – Add an indirect call attribute to declaration of patchable

functions

2. Linker script – Add a function table section and allocate it to the flash memory address

11.1.1.1 Apply Indirect Call Attribute to Function Declaration in Your Program or

Header File

To make a function patchable in C programs, you need to add an attribute

“__attribute__((indirect_call))” to its declaration. It is strongly recommended to

put the function declaration containing the indirect call attribute in the header file. This

can save the trouble of repeating the attribute in source files and avoid the problem of

“mixed calls”.

“Mixed calls” of a function refer to a function that is declared inconsistently in different

source files and should be avoided when you implement indirect call functions for ROM

patching. The following is an example: the function “foo” is declared with the indirect call

attribute in main.c and without the attribute in bar.c.

<main.c>
int foo(int) __attribute__((indirect_call));
int bar(int);
int foo(int v)
{
 return v;
}
int main()
{
 bar (1) + foo(1);
 return 0;
}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 79

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

<bar.c>
int foo(int);
int bar(int v)
{
 return foo(v) +1;
}

Though Andes toolchain can detect mixed calls of a function and try to fix them, the linker

gives warnings for the problem:
Warning: there are mixed indirect call function 'foo'

To get around this error, just put the function declaration with the indirect call attribute in

the header file.

11.1.1.2 Add .nds32.ict Section to Linker Script

In addition to appending an attribute to function declaration, you also need to add a new

section “.nds32.ict” to your linker script for ROM patching. To make the section

overwritable, allocate it to the flash memory address as follows:
.nds32.ict FLASH_ADDRESS : { *(.nds32.ict) }

11.1.2. Limitations

Here are some limitations of indirect call implementation:

 Indirect call functions can’t be inline: To ensure the program is patchable, Andes

compiler forbids indirect call functions to be inline.

 The indirect call attribute applies to extern functions only: Namely, you cannot

declare “static void foo();” as an indirect call function by appending

“__attribute__((indirect_call))” to it.

 Standard C Library is not recommended for indirect call functions: The standard

C library as compiled binaries has complex call sequence hierarchy and may result in

unexpected consequences when used with indirect call functions.

 Assembly code needs to be handled manually: For example, use “bal foo@ICT” for

“bal foo”.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 80

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

 The patch code can’t access static variables in the original code: This is a C

language convention that a static variable can’t be accessed by any translation units outside

its scope.

11.1.3. Tutorial

Given a code example like below, this section demonstrates how to perform ROM patching with

indirect call:

#include <stdio.h>

#include <stdlib.h>

int func1(int);

int func2(int);

int func3(int);

int num1=1;

int num2=2;

int num3=3;

int main(void) {

 printf("func1(30)=%d\n", func1(30));

 printf("func2(30)=%d\n", func2(30));

 printf("func3(30)=%d\n", func3(30));

 return EXIT_SUCCESS;

}

int func1(int x) {

 return x * num1;

}

int func2(int x) {

 return x * num2;

}

int func3(int x)

{

 return x * num3;

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 81

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Preparation: Modify your program by appending “indirect_call” attribute to patchable

functions

Suppose that func1, func2 and func3 may need to be patched in the future, you can make them

patchable by adding the “indirect_call” attribute to their declaration:
#include <stdio.h>

#include <stdlib.h>

int func1(int) __attribute__((indirect_call));

int func2(int) __attribute__((indirect_call));

int func3(int) __attribute__((indirect_call));

int num1=1;

int num2=2;

int num3=3;

int main(void) {

 printf("func1(30)=%d\n", func1(30));

 printf("func2(30)=%d\n", func2(30));

 printf("func3(30)=%d\n", func3(30));

 return EXIT_SUCCESS;

}

int func1(int x) {

 return x * num1;

}

int func2(int x) {

 return x * num2;

}

int func3(int x)

{

 return x * num3;

}

Preparation: Modify linker script by defining a .nds32.ict section

Next, add an .nds32.ict section to your linker script and set it to the flash address. Assuming

that the base address of your flash memory is 0x510000, define the .nds32.ict section as

follows:
…

.nds32.ict 0x510000 : { *(.nds32.ict) }
…

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 82

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

For a SaG-formatted file to be used with the linker script generator command nds_ldsag (see

Chapter 15), define the .nds32.ict section as follows:
USER_SECTIONS .nds32.ict

LOAD 0x510000

{

 EXEC +0x0

 {

 * (.nds32.ict)

 }

}

Preparation: Compile and Link program with specific options

Depending on your address space layout, add a compilation flag from listed below to compile

your program:

 -mict-model=small (enabled by default)

 This flag allocates 4 bytes for each call-site and is used if the address space between ROM

 and flash memory is within ±16MB.

 -mict-model=large
 This flag allocates 10 bytes for each call-site. It results in larger code size, yet has no

 limitation on address space layout. If the address space between ROM and flash memory is

 beyond ±16MB, make sure you use this flag for compilation.

Then, use the options “-Wl,--mexport-symbols=sym.ld” to link the program and export the

symbol addresses. Andes toolchain will generate nds32_ict.s as well as sym.ld after linking.

Both sym.ld and nds32_ict.s are needed for patching functions. sym.ld contains all symbol

addresses in the program and thus can prevent the linker from pulling the symbols again during

the compilation of the patch code.

For example, with a linker script “nds32.ld” and an address space between ROM and flash

memory more than 16MB, use the following commands to build the program:
 nds32le-elf-gcc main.c -mict-model=large -Wl,-T,nds32.ld -o rom-patch-demo

 -Wl,--mexport-symbols=sym.ld

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 83

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

The content of nds32_ict.s generated afterwards is as follows:
.section .nds32.ict, "ax"

.globl _INDIRECT_CALL_TABLE_BASE_

_INDIRECT_CALL_TABLE_BASE_:

 j func2

 j func3

 j func1

DO NOT edit nds32_ict.s, not even to reorder the lines. It will break the program.

Create patch code

Now you can patch a function declared with the indirect_call attribute. For example, create

patch code (patch.c) for func2 as follows:
#include <stdio.h>

#include <stdlib.h>

int func2(int) __attribute__((indirect_call));

extern int num2;

int func2(int x) {

 return x * num2 * 10;

}

Modify linker script and sym.ld

Then, modify your linker script or SaG file so that both the patch code and the .nds32.ict

section are set to the base address of the flash memory (0x510000 in this case). In this example,

to ensure the linker know where to allocate the new func2, delete the line about func2 in

sym.ld (a file generated after linking) and modify the linker script or SaG file by adding

“INCLUDE “sym.ld”” in the header and adding the .nds32.ict section.

Generate patch image

Rename the modified linker script as “patch.ld” and generate the patch image using the

commands below:

nds32le-elf-gcc patch.c nds32_ict.s -Wl,-T,patch.ld -o patch.out -nostdlib

-fno-zero-initialized-in-bss

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 84

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

The option “-nostdlib” prevents the linker from grabbing C library into the patch image while

“-fno-zero-initialized-in-bss” prevents the compiler from putting variables into the .bss

section. The latter is used because the original code that clears the .bss section doesn’t know the

new .bss section in the patch code.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 85

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

11.2. Function Table Mechanism

11.2.1. Implementation of Function Table Mechanism

This mechanism requires modifications on the following parts:

1. Program code – Add a function table for patchable functions

2. Program code – Change each call-site for patchable functions

3. Linker script – Add a function table section and allocate it to the flash memory address

11.2.1.1 Add Function Table for Patchable Functions to Your Program

In your program, define a structure that includes variables for patchable functions. For

example,
int bar(int);

int foo(int);

typedef struct {

 int (*foo)(int);

 int (*bar)(int);

} func_table_t;

Declare a variable “func_table” and initialize the data for patchable functions. In case

“func_table” is optimized out by the compiler, DO NOT declare it as a static or const

variable.
struct func_table_t func_table __attribute__ ((section ("FUNC_TABLE"))) =

 {.foo = foo,

 .bar = bar};

11.2.1.2 Change Every Call-site for Patch-able Functions in Your Program

For example, given the call-site for the function “bar” like below:
printf ("bar 10 = %d\n", bar (10));

Modify it as follows so that it can be called via func_table:
printf ("bar 10 = %d\n", func_table.bar (10));

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 86

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

11.2.1.3 Add Function Table Section to Linker Script

Add a new section “.FUNC_TABLE” to your linker script. To make the section overwritable,

allocate it to the flash memory address as follows:

.FUNC_TABLE FLASH_ADDRESS : { *(.FUNC_TABLE) }

11.2.2. Limitations

 Assembly code needs to be handled manually: For example, replace “bal foo” with
la $ta, func_table
lwi $ta, [$ta + <offset of foo in func_table>]

jral $ta

 The patch code can’t access static variables in the original code: This is a C

language convention that a static variable can’t be accessed by any translation units outside

its scope.

11.2.3. Tutorial

Given a code example like below, this section demonstrates how to perform ROM patching with

function table mechanism:
#include <stdio.h>

#include <stdlib.h>

int func1(int);

int func2(int);

int func3(int);

int num1=1;

int num2=2;

int num3=3;

int main(void) {

 printf("func1(30)=%d\n", func1(30));

 printf("func2(30)=%d\n", func2(30));

 printf("func3(30)=%d\n", func3(30));

 return EXIT_SUCCESS;

}

int func1(int x) {

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 87

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

 return x * num1;

}

int func2(int x) {

 return x * num2;

}

int func3(int x)

{

 return x * num3;

}

Preparation: Modify program code

Suppose that func1, func2 and func3 may need to be patched in the future, define a

func_table_t struct that contains variables for these functions and declare a variable

func_table based on that structure. To prevent the compiler from optimizing out the

indirection layer, DO NOT to define func_table as a const or static global variable. Then,

modify each call-site for these functions so that they can be called via “func_table”.

#include <stdio.h>

#include <stdlib.h>

int func1(int);

int func2(int);

int func3(int);

int num1=1;

int num2=2;

int num3=3;

typedef struct {

 int (*func1)(int);

 int (*func2)(int);

 int (*func3)(int);

} func_table_t;

func_table_t func_table __attribute__ ((section ("FUNC_TABLE"))); =

{.func1 = func1,

 .func2 = func2,

 .func3 = func3};

int main(void) {

 printf("func1(30)=%d\n", func_table.func1(30));

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 88

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

 printf("func2(30)=%d\n", func_table.func2(30));

 printf("func3(30)=%d\n", func_table.func3(30));

 return EXIT_SUCCESS;

}

int func1(int x) {

 return x * num1;

}

int func2(int x) {

 return x * num2;

}

int func3(int x)

{

 return x * num3;

}

Preparation: Modify linker script

Next, add a .FUNC_TABLE section to your linker script and set it to the flash address. Assuming

that the base address of your flash memory is 0x510000, define the .FUNC_TABLE section in

your linker script as follows:
…

.FUNC_TABLE 0x510000 : { *(.FUNC_TABLE) }

…

Preparation: Link program with specific options

Then, use the options “-Wl,--mexport-symbols=sym.ld” to link the program and export the

symbol addresses.

nds32le-elf-gcc main.c -Wl,-T,nds32.ld -o rom-patch -demo

-Wl,--mexport-symbols=sym.ld

Create patch code

Create a patch code that contains the same func_table_t struct. Note that the variables in the

structure can’t be reordered, added or removed. For example, create a patch code (patch.c) for

func2 as follows:
int func1(int);

int func2(int);

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 89

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

int func3(int);

typedef struct {

 int (*func1)(int);

 int (*func2)(int);

 int (*func3)(int);

} func_table_t;

func_table_t func_table __attribute__ ((section ("FUNC_TABLE"))); =

{.func1 = func1,

 .func2 = func2,

 .func3 = func3};

extern int num2;

int func2(int x) {

 return x * num2 * 10;

}

Modify linker script and sym.ld

Then, modify your linker script or SaG file so that both the patch code and the .FUNC_TABLE

section are set to the base address of the flash memory (0x510000 in this case). In this example,

to ensure the linker know where to allocate the new func2, you can delete the line about func2

in sym.ld (a file generated after linking) and modify the linker script or SaG file by adding

“INCLUDE “sym.ld”” in the header and adding the .FUNC_TABLE section.

Generate patch image

Rename the modified linker script as “patch.ld” and generate the patch image using the

commands below:
nds32le-elf-gcc patch.c -Wl,-T,patch.ld -o patch.out -nostdlib

-fno-zero-initialized-in-bss

The option “-nostdlib” prevents the linker from grabbing C library into the patch image while

“-fno-zero-initialized-in-bss” prevents the compiler from putting variables into the .bss

section. The latter is used because the original code that clears the .bss section doesn’t know the

new .bss section in the patch code.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 90

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

12. Andes Intrinsic Function Programming

In compiler theory, an intrinsic function is a function available in a given language whose

implementation is handled specially by the compiler. If a function is intrinsic, the code for that

function is usually inserted inline, avoiding the overhead of a function call and allowing highly

efficient machine instructions to be emitted for that function.

The current Andes intrinsic functions are for users (including OS engineers) who don’t want to

program in assembly. They cover all the operations which compiler cannot generate.

NOTE: Be sure to use the correct signedness for arguments and return values when calling

intrinsic functions. Starting from BSP v4.0 official, the compiler has a strict type

checking. It gives warnings for incorrect signedness and reports errors if the option

-Werror is specified.

12.1. Summary of Andes Intrinsic Functions
For each Andes intrinsic function, its syntax, mapped Andes instruction, and if compiler can

schedule it or not (schedulable) are shown in the following tables.

Table 10. Intrinsics for Load/Store

Intrinsic Function Syntax

Mapped

Andes

Instruction

Schedulable Page

unsigned int __nds32__llw(unsigned int *a) LLW No 104

char __nds32__lbup(unsigned char *a) LBUP Yes 105

unsigned int __nds32__lwup(unsigned int *a) LWUP Yes 106

unsigned int __nds32__scw(unsigned int *a, unsigned int

b)
SCW No 108

void __nds32__sbup(unsigned char *a, char b) SBUP Yes 107

void __nds32__swup(unsigned int *a, unsigned int b) SWUP Yes 109

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 91

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Table 11. Intrinsics for Read/Write System and USR Registers

Intrinsic Function Syntax

Mapped

Andes

Instruction

Schedulable Page

unsigned int __nds32__mfsr(const enum nds32_sr srname) MFSR No 111

unsigned int __nds32__mfusr(const enum nds32_usr

usrname)
MFUSR No 112

void __nds32__mtsr(unsigned int val, const enum

nds32_sr srname)
MTSR No 113

void __nds32__mtsr_isb(unsigned int val, const enum

nds32_sr srname)

MTSR

ISB
No 114

void __nds32__mtsr_dsb(unsigned int val, const enum

nds32_sr srname)

MTSR

DSB
No 115

void __nds32__mtusr(unsigned int val, const enum

nds32_usr usrname)
MTUSR No 116

Table 12. Miscellaneous Intrinsics

Intrinsic Function Syntax

Mapped

Andes

Instruction

Schedulable Page

void __nds32__break(const unsigned int swid) BREAK No 120

void __nds32__cctlva_lck(const enum nds32_cctl_valck

subtype, unsigned int *va)
CCTL No 121

void __nds32__cctlidx_wbinval(const enum

nds32_cctl_idxwbinv subtype, unsigned int idx)
CCTL No 121

void __nds32__cctlva_wbinval_alvl(const enum

nds32_cctl_vawbinv subtype, unsigned int *va)
CCTL No 121

void __nds32__cctlva_wbinval_one_lvl(const enum

nds32_cctl_vawbinv subtype, unsigned int *va)
CCTL No 121

unsigned int __nds32__cctlidx_read(const enum CCTL No 121

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 92

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Intrinsic Function Syntax

Mapped

Andes

Instruction

Schedulable Page

nds32_cctl_idxread subtype, unsigned int idx)

void __nds32__cctlidx_write(const enum

nds32_cctl_idxwrite subtype, unsigned int b, unsigned

int idxw)

CCTL No 121

void __nds32__cctl_l1d_invalall() CCTL No 121

void __nds32__cctl_l1d_wball_alvl() CCTL No 121

void __nds32__cctl_l1d_wball_one_lvl() CCTL No 121

void __nds32__dpref_qw(unsigned char *a, unsigned int

b, const enum nds32_dpref subtype)
DPREF No 124

void __nds32__dpref_hw(unsigned short int *a, unsigned

int b, const enum nds32_dpref subtype)
DPREF No 124

void __nds32__dpref_w(unsigned int *a, unsigned int b,

const enum nds32_dpref subtype)
DPREF No 124

void __nds32__dpref_dw(unsigned long long *a, unsigned

int b, const enum nds32_dpref subtype)
DPREF No 124

void __nds32__dsb() DSB No 126

unsigned int __nds32__get_current_sp() No 127

unsigned long long __nds32__get_unaligned_dw(unsigned

long long *a)
 Yes 128

unsigned int __nds32__get_unaligned_w(unsigned int *a) Yes 128

unsigned short __nds32__get_unaligned_hw(unsigned

short *a)
 Yes 128

void __nds32__isb() ISB No 129

void __nds32__isync(unsigned int *a) ISYNC No 130

void __nds32__jr_itoff(unsigned int a) JR.ITOFF No 131

void __nds32__jr_toff(unsigned int a) JR.TOFF No 132

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 93

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Intrinsic Function Syntax

Mapped

Andes

Instruction

Schedulable Page

void __nds32__jral_iton(unsigned int a) JRAL.ITON No 133

void __nds32__jral_ton(unsigned int a) JRAL.TON No 134

void __nds32__msync_all() MSYNC No 135

void __nds32__msync_store() MSYNC No 135

void __nds32__nop() NOP No 136

void __nds32__put_unaligned_dw(unsigned long long *a,

unsigned long long data)
 Yes 137

void __nds32__put_unaligned_w(unsigned int *a,

unsigned int data)
 Yes 137

void __nds32__put_unaligned_hw(unsigned short *a,

unsigned short data)
 Yes 137

unsigned int __nds32__return_address() No 141

void __nds32__ret_itoff(unsigned int a) RET.ITOFF No 142

void __nds32__ret_toff(unsigned int a) RET.TOFF No 143

unsigned int __nds32__rotr(unsigned int val, unsigned

int ror)
ROTR Yes 138

void __nds32__schedule_barrier() No 139

void __nds32__set_current_sp(unsigned int sp) No 144

void __nds32__standby_no_wake_grant() STANDBY No 145

void __nds32__standby_wake_grant() STANDBY No 145

void __nds32__standby_wait_done() STANDBY No 145

void __nds32__teqz(const unsigned int a, const unsigned

int swid)
TEQZ No 149

void __nds32__tnez(const unsigned int a, const unsigned

int swid)
TNEZ No 149

void __nds32__trap(const unsigned int swid) TRAP No 149

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 94

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Intrinsic Function Syntax

Mapped

Andes

Instruction

Schedulable Page

void __nds32__setend_big() SETEND No 140

void __nds32__setend_little() SETEND No 140

unsigned int __nds32__sva(int a, int b) SVA Yes 146

unsigned int __nds32__svs(int a, int b) SVS Yes 147

void __nds32__syscall(const unsigned int swid) SYSCALL No 148

unsigned int __nds32__wsbh(unsigned int a) WSBH Yes 150

Table 13. Intrinsics for PE1 Instructions

Intrinsic Function Syntax

Mapped

Andes

Instruction

Schedulable Page

int __nds32__abs(int a) ABS Yes 152

int __nds32__ave(int a, int b) AVE Yes 153

unsigned int __nds32__bclr(unsigned int a, const

unsigned int pos)
BCLR Yes 154

unsigned int __nds32__bset(unsigned int a, const

unsigned int pos)
BSET Yes 154

unsigned int __nds32__btgl(unsigned int a, const

unsigned int pos)
BTGL Yes 154

unsigned int __nds32__btst(unsigned int a, const

unsigned int pos)
BTST Yes 154

unsigned int __nds32__clip(int a, const unsigned int

imm)
CLIP Yes 156

int __nds32__clips(int a, const unsigned int imm) CLIPS Yes 157

unsigned int __nds32__clz(unsigned int a) CLZ Yes 159

unsigned int __nds32__clo(unsigned int a) CLO Yes 158

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 95

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Table 14. Intrinsics for PE2 Instructions

Intrinsic Function Syntax

Mapped

Andes

Instruction

Schedulable Page

void __nds32__bse(unsigned int *t, unsigned int a,

unsigned int *b)
BSE Yes 161

void __nds32__bsp(unsigned int *t, unsigned int a,

unsigned int *b)
BSP Yes 162

unsigned int __nds32__pbsad(unsigned int a, unsigned

int b)
PBSAD Yes 163

unsigned int __nds32__pbsada(unsigned int acc, unsigned

int a, unsigned int b)
PBSADA Yes 164

Table 15. Intrinsics for String

Intrinsic Function Syntax

Mapped

Andes

Instruction

Schedulable Page

int __nds32__ffb(unsigned int a, unsigned int b) FFB Yes 166

int __nds32__ffmism(unsigned int a, unsigned int b) FFMISM Yes 168

int __nds32__flmism(unsigned int a, unsigned int b) FLMISM Yes 169

Table 16. Intrinsics for FPU

Intrinsic Function Syntax

Mapped

Andes

Instruction

Schedulable Page

double __nds32__fcpynsd(double a, double b) FCPYNSD Yes 171

float __nds32__fcpynss(float a, float b) FCPYNSS Yes 171

double __nds32__fcpysd(double a, double b) FCPYSD Yes 171

float __nds32__fcpyss(float a, float b) FCPYSS Yes 171

unsigned int __nds32__fmfcsr() FMFcSR No 174

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 96

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Intrinsic Function Syntax

Mapped

Andes

Instruction

Schedulable Page

void __nds32__fmtcsr(unsigned int fpcsr) FMTCSR No 175

unsigned int __nds32__fmfcfg() FMFCFG Yes 173

Table 17. Intrinsics for TLBOP

Intrinsic Function Syntax

Mapped

Andes

Instruction

Schedulable Page

void __nds32__tlbop_trd(unsigned int a) TLBOP No 177

void __nds32__tlbop_twr(unsigned int a) TLBOP No 178

void __nds32__tlbop_rwr(unsigned int a) TLBOP No 179

void __nds32__tlbop_rwlk(unsigned int a) TLBOP No 180

void __nds32__tlbop_unlk(unsigned int a) TLBOP No 181

void __nds32__tlbop_pb(unsigned int a) TLBOP No 182

void __nds32__tlbop_inv(unsigned int a) TLBOP No 184

void __nds32__tlbop_flua() TLBOP No 185

Table 18. Intrinsics for Saturation ISA

Intrinsic Function Syntax

Mapped

Andes

Instruction

Schedulable Page

int __nds32__kaddw(int a, int b) KADDW Yes 187

int __nds32__ksubw(int a, int b) KSUBW Yes 188

int __nds32__kaddh(int a, int b) KADDH Yes 189

int __nds32__ksubh(int a, int b) KSUBH Yes 190

int __nds32__kdmbb(unsigned int a, unsigned int b) KDMBB Yes 191

int __nds32__kdmbt(unsigned int a, unsigned int b) KDMBT Yes 191

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 97

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Intrinsic Function Syntax

Mapped

Andes

Instruction

Schedulable Page

int __nds32__kdmtb(unsigned int a, unsigned int b) KDMTB Yes 191

int __nds32__kdmtt(unsigned int a, unsigned int b) KDMTT Yes 191

int __nds32__khmbb(unsigned int a, unsigned int b) KHMBB Yes 192

int __nds32__khmbt(unsigned int a, unsigned int b) KHMBT Yes 192

int __nds32__khmtb(unsigned int a, unsigned int b) KHMTB Yes 192

int __nds32__khmtt(unsigned int a, unsigned int b) KHMTT Yes 192

int __nds32__kslraw(int a, signed char b) KSLRAW Yes 193

unsigned int __nds32__rdov() RDOV Yes 194

void __nds32__clrov() CLROV Yes 195

Table 19. Intrinsics for Interruption

Intrinsic Function Syntax

Mapped

Andes

Instruction

Schedulable Page

void __nds32__setgie_dis() SETGIE No 197

void __nds32__setgie_en() SETGIE No 197

void __nds32__gie_dis() No 198

void __nds32__gie_en() No 198

void __nds32__enable_int(enum nds32_intrinsic int_id) No 199

void __nds32__disable_int(enum nds32_intrinsic int_id) No 199

void __nds32__set_pending_swint() No 201

void __nds32__clr_pending_swint() No 201

void __nds32__clr_pending_hwint(enum nds32_intrinsic

int_id)
 No 202

unsigned int __nds32__get_pending_int(enum

nds32_intrinsic int_id)
 No 204

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 98

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Intrinsic Function Syntax

Mapped

Andes

Instruction

Schedulable Page

unsigned int __nds32__get_all_pending_int() No 206

void __nds32__set_int_priority(enum nds32_intrinsic

int_id, unsigned int prio)
 No 207

unsigned int __nds32__get_int_priority(enum

nds32_intrinsic int_id)
 No 207

unsigned int __nds32__get_trig_type(enum

nds32_intrinsic int_id)
 No 209

Table 20. Intrinsics for COP Instructions

Intrinsic Function Syntax

Mapped

Andes

Instruction

Schedulable Page

void __nds32__cpe1(const unsigned int cpn, const

unsigned int cpi19)

void __nds32__cpe2(const unsigned int cpn, const

unsigned int cpi19)

void __nds32__cpe3(const unsigned int cpn, const

unsigned int cpi19)

void __nds32__cpe4(const unsigned int cpn, const

unsigned int cpi19)

CPE1

CPE2

CPE3

CPE4

No 212

void __nds32__cpld(const unsigned int cpn, const

unsigned int cprn, unsigned long long *base, signed int

roffset, const unsigned int sv)

void __nds32__cpld_bi(const unsigned int cpn, const

unsigned int cprn, unsigned long long *base, signed int

roffset, const unsigned int sv)

CPLD

CPLD.BI
No 213

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 99

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Intrinsic Function Syntax

Mapped

Andes

Instruction

Schedulable Page

void __nds32__cpldi(const unsigned int cpn, const

unsigned int cprn, unsigned long long *base, const signed

int imm12)

void __nds32__cpldi_bi(const unsigned int cpn, const

unsigned int cprn, unsigned long long *base, const signed

int imm12)

CPLDI

CPLDI.BI
No 215

void __nds32__cplw(const unsigned int cpn, const

unsigned int cprn, unsigned int *base, signed int

roffset, const unsigned int sv)

void __nds32__cplw_bi(const unsigned int cpn, const

unsigned int cprn, unsigned int *base, signed int

roffset, const unsigned int sv)

CPLW

CPLW.BI
No 217

void __nds32__cplwi(const unsigned int cpn, const

unsigned int cprn, unsigned int *base, const signed int

imm12)

void __nds32__cplwi_bi(const unsigned int cpn, const

unsigned int cprn, unsigned int *base, const signed int

imm12)

CPLWI

CPLWI.BI
No 219

void __nds32__cpsd(const unsigned int cpn, const

unsigned int cprn, unsigned long long *base, signed int

roffset, const unsigned int sv)

void __nds32__cpsd_bi(const unsigned int cpn, const

unsigned int cprn, unsigned long long *base, signed int

roffset, const unsigned int sv)

CPSD

CPSD.BI
No 221

void __nds32__cpsdi(const unsigned int cpn, const

unsigned int cprn, unsigned long long *base, const signed

int imm12)

void __nds32__cpsdi_bi(const unsigned int cpn, const

CPSDI

CPSDI.BI
No 223

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 100

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Intrinsic Function Syntax

Mapped

Andes

Instruction

Schedulable Page

unsigned int cprn, unsigned long long *base, const signed

int imm12)

void __nds32__cpsw(const unsigned int cpn, const

unsigned int cprn, unsigned int *base, signed int

roffset, const unsigned int sv)

void __nds32__cpsw_bi(const unsigned int cpn, const

unsigned int cprn, unsigned int *base, signed int

roffset, const unsigned int sv)

CPSW

CPSW.BI
No 225

void __nds32__cpswi(const unsigned int cpn, const

unsigned int cprn, unsigned int *base, const signed int

imm12)

void __nds32__cpswi_bi(const unsigned int cpn, const

unsigned int cprn, unsigned int *base, const signed int

imm12)

CPSWI

CPSWI.BI
No 227

unsigned long long __nds32__mfcpd(const unsigned int

cpn, const unsigned int imm12)
MFCPD No 229

unsigned int __nds32__mfcpw(const unsigned int cpn,

unsigned const int imm12)
MFCPW No 230

unsigned int __nds32__mfcppw(const unsigned int cpn,

const unsigned int imm12)
MFCPPW No 231

void __nds32__mtcpd(const unsigned int cpn, unsigned

long long source, const unsigned int imm12)
MTCPD No 232

void __nds32__mtcpw(const unsigned int cpn, unsigned

int source, const unsigned int imm12)
MTCPW No 233

void __nds32__mtcppw(const unsigned int cpn, unsigned

int source, const unsigned int imm12)
MTCPPW No 234

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 101

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

NOTE: Instruction scheduling is a compiler optimization used to improve instruction-level

parallelism, which improves performance on machines with instruction pipelines.

Namely, without changing the meaning of the code, it tries to avoid pipeline stalls by

rearranging the order of instructions. The following is an instruction scheduling

example:

 code example before instruction scheduling

…
InstructionA
InstructionB
InstructionC
…

 code example after instruction scheduling

…
InstructionA
InstructionC
InstructionB
…

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 102

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

12.2. Detailed Intrinsic Function Description
To help you quickly identify which intrinsic functions are available, each intrinsic function is

specified with the Instruction Set Architecture (ISA) version and supported CPUs. The ISA

version maintains backward compatibility, so a CPU with higher ISA version supports all

intrinsic functions from the lower versions (but not vice versa). For example, a CPU with ISA V3

supports all intrinsic functions available in ISA V1 and V2. On the other hand, a CPU with ISA V1

does not support any intrinsic functions available in ISA V2 or V3. If a non-supported intrinsic

function is executed, the CPU will generate a “Reserved Instruction Exception.” Furthermore,

during program execution or debugging, the ISA version can be identified by the value of the

system register MSC_CFG.BASEV: 0 for V1, 1 for V2, and 2 for V3.

The following table shows examples of AndesCores supporting V3, V3m or V3m+ ISA and how

the ISA versions are indicated by register bits of these cores.

AndeStar ISA Examples of Supported AndesCores Indication in Register Bits

V3 N968, N1068, N1337, N15, D1088, D15
MSC_CFG.BASEV == 2

& MSC_CFG.MCU == 0

V3m N650, N705, N801, E801, S801

MSC_CFG.BASEV == 2

& MSC_CFG.MCU == 1

& MSC_CFG.IFC == 0

& MSC_CFG.EIT == 0

V3m+ N820, E830

MSC_CFG.BASEV == 2

& MSC_CFG.MCU == 1

& MSC_CFG.IFC == 1

& MSC_CFG.EIT == 1

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 103

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

12.2.1. Intrinsics for Load/Store

The following table indicates the supported AndesCores for each intrinsic function introduced in

this section.

Intrinsic Function Supported CPUs Page

__nds32__llw Only AndesCores with V3 (but not with V3m/V3m+) architecture 104

__nds32__lbup Only AndesCores with V3 (but not with V3m/V3m+) architecture 105

__nds32__lwup Only AndesCores with V3 (but not with V3m/V3m+) architecture 106

__nds32__scw Only AndesCores with V3 (but not with V3m/V3m+) architecture 108

__nds32__sbup Only AndesCores with V3 (but not with V3m/V3m+) architecture 107

__nds32__swup Only AndesCores with V3 (but not with V3m/V3m+) architecture 109

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 104

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__llw

Syntax
unsigned int __nds32__llw(unsigned int *a)

Where parameter “*a” is the memory address of variable “a”.

Description

This intrinsic inserts a LLW instruction into the instruction stream. The memory address for the

load locked operation is specified by *a.

Return Value

The __nds32__llw intrinsic returns the memory content of *a.

Privilege Level: ALL

Example

#include <nds32_intrinsic.h>

void func(void)

{

 …//We want to perform atomic read-modify-write operations for variable

rmw.

 unsigned int success;

 unsigned int rmw = 0x0000FFFF; //The initial value of rmw

rmw =__nds32__llw(&rmw); //read

 … //modify

 success = __nds32__scw(&rmw, rmw); //write

 //The variable success indicates if the SCW succeed.

 …

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 105

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__lbup

Syntax
char __nds32__lbup(unsigned char *a)

Where parameter “*a” is the memory address of variable “a”.

Description

This intrinsic inserts a LBUP instruction into the instruction stream. The memory address for the

load operation with user mode privilege address translation is specified by *a.

Return Value

The __nds32__lbup intrinsic returns the memory content of *a.

Privilege Level: ALL

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 106

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__lwup

Syntax
unsigned int __nds32__lwup(unsigned int *a)

Where parameter “*a” is the memory address of variable “a”.

Description

This intrinsic inserts a LWUP instruction into the instruction stream. The memory address for the

load operation with user mode privilege address translation is specified by *a.

Return Value

The __nds32__lwup intrinsic returns the memory content of *a.

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func(void)

{

 unsigned int a;

…

a =__nds32__lwup(&a); //This performs memory load operation for variable.

//a with user mode privilege address translation

 … //processing

__nds32__swup(&a, a); //This performs memory store operation for variable.

//a with user mode privilege address translation

 …
}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 107

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__sbup

Syntax
void __nds32__sbup(unsigned char *a, char b)

Where:

Parameter “*a” is the memory address of variable “a”.

Parameter “b” is the byte to be stored.

Description

This intrinsic inserts a SBUP instruction into the instruction stream. The byte to be stored and

the memory address for the store operation with user mode privilege address translation are

specified by b and *a, respectively.

Privilege Level: ALL

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 108

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__scw

Syntax
unsigned int __nds32__scw(unsigned int *a, unsigned int b)

Where:

Parameter “*a” is the memory address of variable “a”.

Parameter “b” is the 32-bit word to be stored.

Description

This intrinsic inserts a SCW instruction into the instruction stream. The word to be stored and the

memory address for the store conditional operation are specified by b and *a, respectively.

Return Value

If the store operation is successfully performed, 1 is returned. Otherwise, 0 is returned.

Privilege Level: ALL

Example

See also __nds32__llw

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 109

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__swup

Syntax
void __nds32__swup(unsigned int *a, unsigned int b)

Where:

Parameter “*a” is the memory address of variable “a”.

Parameter “b” is the 32-bit word to be stored.

Description

This intrinsic inserts a SWUP instruction into the instruction stream. The word to be stored and

the memory address for the store operation with user mode privilege address translation are

specified by b and *a, respectively.

Privilege Level: ALL

Example

See also __nds32__lwup

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 110

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

12.2.2. Intrinsics for Read/Write System and USR Registers

The following table indicates the supported AndesCores for each intrinsic function introduced in

this section.

Intrinsic Function Supported CPUs Page

__nds32__mfsr All AndesCores 111

__nds32__mfusr Only AndesCores with V3/V3m+ (but not with V3m) architecture 112

__nds32__mtsr All AndesCores 113

__nds32__mtsr_isb All AndesCores 114

__nds32__mtsr_dsb All AndesCores 115

__nds32__mtusr Only AndesCores with V3/V3m+ (but not with V3m) architecture 116

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 111

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__mfsr

Syntax
unsigned int __nds32__mfsr(const enum nds32_sr srname)

Where:

srname is an SR symbolic mnemonic with a prefix NDS32_SR_. For example, the symbolic

mnemonic of processor status word register is PSW while its simple mnemonic is IR0. In this case,

the legal srname is NDS32_SR_PSW, not NDS32_SR_IR0.

Description

This intrinsic returns the content of the SR specified by srname.

Return Value

The __nds32__mfsr intrinsic returns the content of the SR specified by srname.

Privilege Level: Superuser and above

Example

See also __nds32__mtsr.

Note:

If you specify a USR symbolic mnemonic as srname, compiler might generate a wrong

instruction.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 112

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__mfusr

Syntax
unsigned int __nds32__mfusr(const enum nds32_usr usrname)

Where:

usrname is a USR symbolic mnemonic with a prefix NDS32_USR_.

Description

This intrinsic returns the content of the USR specified by usrname.

Return Value

The __nds32__mfusr intrinsic returns the content of the USR specified by usrname.

Privilege Level: ALL

Example

See also __nds32__mtusr.

Note:

If you specify an SR symbolic mnemonic as usrname, compiler might generate a wrong

instruction.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 113

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__mtsr

Syntax
void __nds32__mtsr(unsigned int val, const enum nds32_sr srname)

Where:

srname is an SR symbolic mnemonic with a prefix NDS32_SR_. For example, the symbolic

mnemonic of processor status word register is PSW while its simple mnemonic is IR0. In this case,

the legal srname is NDS32_SR_PSW, not NDS32_SR_IR0.

Description

This intrinsic moves val to the SR specified by srname.

Privilege Level: Superuser and above

Example
#include <nds32_intrinsic.h>

void func(void)

{

 …

 unsigned int psw=__nds32__mfsr(NDS32_SR_PSW); //get the content of PSW.

 psw = psw | 0x00000080;

 __nds32__mtsr(psw, NDS32_SR_PSW); //set PSW.DT bit.

 __nds32__dsb();

 …

}

Note:

If you specify a USR symbolic mnemonic as srname, compiler might generate a wrong

instruction.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 114

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__mtsr_isb

Syntax
void __nds32__mtsr_isb(unsigned int val, const enum nds32_sr srname)

Where:

srname is an SR symbolic mnemonic with a prefix NDS32_SR_. For example, the symbolic

mnemonic of processor status word register is PSW while its simple mnemonic is IR0. In this case,

the legal srname is NDS32_SR_PSW, not NDS32_SR_IR0.

Description

This intrinsic moves val to the SR specified by srname and then executes an ISB instruction to

make sure the new SR value can be observed by or affect any operation after this intrinsic

function.

Privilege Level: Superuser and above

Example
#include “nds32_intrinsic.h”

void func(void)

{

 …

 unsigned int psw=__nds32__mfsr(NDS32_SR_PSW); //get the content of PSW.

 psw = psw | 0x00000040;

 __nds32__mtsr_isb(psw, NDS32_SR_PSW); //set PSW.IT bit.

 …

}

Note:

If you specify a USR symbolic mnemonic as srname, compiler might generate a wrong

instruction.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 115

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__mtsr_dsb

Syntax
void __nds32__mtsr_dsb(unsigned int val, const enum nds32_sr srname)

Where:

srname is an SR symbolic mnemonic with a prefix NDS32_SR_. For example, the symbolic

mnemonic of processor status word register is PSW while its simple mnemonic is IR0. In this case,

the legal srname is NDS32_SR_PSW, not NDS32_SR_IR0.

Description

This intrinsic moves val to the SR specified by srname and then executes a DSB instruction to

make sure the new SR value can be observed by or affect any operation after this intrinsic

function.

Privilege Level: Superuser and above

Example
#include “nds32_intrinsic.h”

void func(void)

{

 …

 unsigned int psw=__nds32__mfsr(NDS32_SR_PSW); //get the content of PSW.

 psw = psw | 0x00000080;

 __nds32__mtsr_dsb(psw, NDS32_SR_PSW); //set PSW.DT bit.

 …

}

Note:

If you specify a USR symbolic mnemonic as srname, compiler might generate a wrong

instruction.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 116

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__mtusr

Syntax
void __nds32__mtusr(unsigned int val, const enum nds32_usr usrname)

Where:

usrname is a USR symbolic mnemonic with a prefix NDS32_USR_.

Description

This intrinsic moves val to the USR specified by usrname.

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func(void)

{

 …

 unsigned int pfm_ctl=__nds32__mfusr(NDS32_SR_PFM_CTL);

//get PFM_CTL

 pfm_ctl = pfm_ctl | 0x00000001;

 __nds32__mtusr(pfm_ctl, NDS32_SR_PFM_CTL); //enable PFMC0

 …

}

/* assume the access permission is enabled in user mode*/

Note:

If you specify an SR symbolic mnemonic as usrname, compiler might generate a wrong

instruction.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 117

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

12.2.3. Miscellaneous Intrinsics

The following table indicates the supported AndesCores for each intrinsic function introduced in

this section.

Intrinsic Function Supported CPUs Page

__nds32__break All AndesCores 120

__nds32__cctlva_lck
Only AndesCores with V3 (but not with V3m/V3m+)

architecture
121

__nds32__cctlidx_wbinval
Only AndesCores with V3 (but not with V3m/V3m+)

architecture
121

__nds32__cctlva_wbinval_alvl
Only AndesCores with V3 (but not with V3m/V3m+)

architecture
121

__nds32__cctlva_wbinval_one_lvl
Only AndesCores with V3 (but not with V3m/V3m+)

architecture
121

__nds32__cctlidx_read
Only AndesCores with V3 (but not with V3m/V3m+)

architecture
121

__nds32__cctlidx_write
Only AndesCores with V3 (but not with V3m/V3m+)

architecture
121

__nds32__cctl_l1d_invalall
Only AndesCores with V3 (but not with V3m/V3m+)

architecture
121

__nds32__cctl_l1d_wball_alvl
Only AndesCores with V3 (but not with V3m/V3m+)

architecture
121

__nds32__cctl_l1d_wball_one_lvl
Only AndesCores with V3 (but not with V3m/V3m+)

architecture
121

__nds32__dpref_qw
Only AndesCores with V3 (but not with V3m/V3m+)

architecture
124

__nds32__dpref_hw
Only AndesCores with V3 (but not with V3m/V3m+)

architecture
124

__nds32__dpref_w
Only AndesCores with V3 (but not with V3m/V3m+)

architecture
124

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 118

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Intrinsic Function Supported CPUs Page

__nds32__dpref_dw
Only AndesCores with V3 (but not with V3m/V3m+)

architecture
124

__nds32__dsb All AndesCores 126

__nds32__get_current_sp All AndesCores 127

__nds32__get_unaligned_dw All AndesCores 128

__nds32__get_unaligned_w All AndesCores 128

__nds32__get_unaligned_hw All AndesCores 128

__nds32__isb All AndesCores 129

__nds32__isync All AndesCores 130

__nds32__jr_itoff
Only AndesCores with V3 (but not with V3m/V3m+)

architecture
131

__nds32__jr_toff
Only AndesCores with V3 (but not with V3m/V3m+)

architecture
132

__nds32__jral_iton
Only AndesCores with V3 (but not with V3m/V3m+)

architecture
133

__nds32__jral_ton
Only AndesCores with V3 (but not with V3m/V3m+)

architecture
134

__nds32__msync_all All AndesCores 135

__nds32__msync_store All AndesCores 135

__nds32__nop All AndesCores 136

__nds32__put_unaligned_dw All AndesCores 137

__nds32__put_unaligned_w All AndesCores 137

__nds32__put_unaligned_hw All AndesCores 137

__nds32__return_address All AndesCores 141

__nds32__ret_itoff
Only AndesCores with V3 (but not with V3m/V3m+)

architecture
142

__nds32__ret_toff
Only AndesCores with V3 (but not with V3m/V3m+)

architecture
143

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 119

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Intrinsic Function Supported CPUs Page

__nds32__rotr All AndesCores 138

__nds32__schedule_barrier All AndesCores 139

__nds32__set_current_sp All AndesCores 144

__nds32__standby_no_wake_grant All AndesCores 145

__nds32__standby_wake_grant All AndesCores 145

__nds32__standby_wait_done All AndesCores 145

__nds32__teqz
Only AndesCores with V3 (but not with V3m/V3m+)

architecture
149

__nds32__tnez
Only AndesCores with V3 (but not with V3m/V3m+)

architecture
149

__nds32__trap
Only AndesCores with V3 (but not with V3m/V3m+)

architecture
149

__nds32__setend_big All AndesCores 140

__nds32__setend_little All AndesCores 140

__nds32__sva All AndesCores 146

__nds32__svs All AndesCores 147

__nds32__syscall All AndesCores 148

__nds32__wsbh All AndesCores 150

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 120

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__break

Syntax
void __nds32__break(const unsigned int swid)

Where:

swid is a 15-bit constant value.

Description

This intrinsic unconditionally generates a breakpoint exception and transfers control to the

breakpoint exception handler. The 15-bits swid is used as a parameter to distinguish different

breakpoint features and usages.

------------Note------------

The case that swid > 32767 is not allowed. If it occurs, compiler will generate an error message

of “the argument swid in __nds32__break should be in the range 0-32767”.

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func(void)

{

 …

 __nds32__break(0x2C);

 …

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 121

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__cctlva_lck

__nds32__cctlidx_wbinval

__nds32__cctlva_wbinval_alvl

__nds32__cctlva_wbinval_one_lvl

__nds32__cctlidx_read

__nds32__cctlidx_write

__nds32__cctl_l1d_invalall

__nds32__cctl_l1d_wball_alvl

__nds32__cctl_l1d_wball_one_lvl

Syntax

A. void __nds32__cctlva_lck(const enum nds32_cctl_valck subtype, unsigned int

*va)

B. void __nds32__cctlidx_wbinval(const enum nds32_cctl_idxwbinv subtype,

unsigned int idx)

C. void __nds32__cctlva_wbinval_alvl(const enum nds32_cctl_vawbinv subtype,

unsigned int *va,)

D. void __nds32__cctlva_wbinval_one_lvl(const enum nds32_cctl_vawbinv subtype,

unsigned int *va,)

E. unsigned int __nds32__cctlidx_read(const enum nds32_cctl_idxread subtype,

unsigned int idx)

F. void __nds32__cctlidx_write(const enum nds32_cctl_idxwrite subtype, unsigned

int b, unsigned int idxw)

G. void __nds32__cctl_l1d_invalall()

H. void __nds32__cctl_l1d_wball_alvl()

I. void __nds32__cctl_l1d_wball_one_lvl()

Where:

*va is the virtual address for cctl operation.

idx is a 32-bit constant which specifies the index and way for cache access.

idxw is a 32-bit constant which specifies the index, way, and word offset for cache access.

subtype specifies the subtype of the cctl operation. The detailed subtypes for various

syntaxes are listed below

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 122

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Syntax CCTL subtype Operations

A

NDS32_CCTL_L1D_VA_FILLCK,

NDS32_CCTL_L1D_VA_ULCK,

NDS32_CCTL_L1I_VA_FILLCK,

NDS32_CCTL_L1I_VA_ULCK

Fill and lock, and unlock

B

NDS32_CCTL_L1D_IX_WBINVAL,

NDS32_CCTL_L1D_IX_INVAL,

NDS32_CCTL_L1D_IX_WB,

NDS32_CCTL_L1I_IX_INVAL

IDX writeback and invalidate

C

NDS32_CCTL_L1D_VA_INVAL,

NDS32_CCTL_L1D_VA_WB,

NDS32_CCTL_L1D_VA_WBINVAL,

NDS32_CCTL_L1I_VA_INVAL

All level VA writeback and

invalidate

D

NDS32_CCTL_L1D_VA_INVAL,

NDS32_CCTL_L1D_VA_WB,

NDS32_CCTL_L1D_VA_WBINVAL,

NDS32_CCTL_L1I_VA_INVAL

One level VA writeback and

invalidate

E

NDS32_CCTL_L1D_IX_RTAG,

NDS32_CCTL_L1D_IX_RWD,

NDS32_CCTL_L1I_IX_RTAG,

NDS32_CCTL_L1I_IX_RWD

Cache read

F

NDS32_CCTL_L1D_IX_WTAG,

NDS32_CCTL_L1D_IX_WWD,

NDS32_CCTL_L1I_IX_WTAG,

NDS32_CCTL_L1I_IX_WWD

Cache write

G

Unlock all of the L1D cache lines

and set the state of all of the L1D

cache lines to invalid.

H All level L1D cache writeback

I One level L1D cache writeback

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 123

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Description

This intrinsic inserts a CCTL instruction into the instruction stream. Please refer to the CCTL

instruction in AndeStar Instruction Set Architecture Manual for the detailed description.

Return Value

Only __nds32__cctlidx_read returns the content of the cache location. All the others have no

return values.

Privilege Level:

Privilege Level Intrinsics

ALL
__nds32__cctlva_wbinval_alvl

__nds32__cctlva_wbinval_one_lvl

Superuser and above All the other types

Example
#include <nds32_intrinsic.h>

void func(void)

{

 …

 __nds32__cctl_l1d_invalall(); //invalid the whole data cache.

 __nds32__dsb();

 …

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 124

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__dpref_qw

__nds32__dpref_hw

__nds32__dpref_w

__nds32__dpref_dw

Syntax
void __nds32__dpref_qw(unsigned char *a, unsigned int b, const enum nds32_dpref

subtype)

void __nds32__dpref_hw(unsigned short int *a, unsigned int b, const enum

nds32_dpref subtype)

void __nds32__dpref_w(unsigned int *a, unsigned int b, const enum nds32_dpref

subtype)

void __nds32__dpref_dw(unsigned long long *a, unsigned int b, const enum

nds32_dpref subtype)

Where:

Parameter “*a” is an address of an array element.

Parameter “b” is the byte/half word/word/double word offset based on the data type in syntax.

subtype defines subtype of the data prefetch operation.

Description

Depending on the type of variable b, this intrinsic inserts a DPREF or DPREFI instruction into the

instruction stream. If b is a constant while using __nds32__dpref_w and __nds32__dpref_dw,

DPREFI is inserted. Otherwise, DPREFI is inserted. It will perform a data prefetch operation for

bth array element from a. The subtype argument of this intrinsic is used as a hint to tell

hardware the intended use of the prefetched data so that the hardware implementation may use

different prefetch schemes to optimize the performance. Note that N9/N10/N13/N15/D10/D15

implementation prefetches the data cache block which contains a for all DPREF/DPREFI

subtypes.

------------Note------------

The case that constant type b > 16383 and b < -16384 is not allowed in __nds32__dpref_w and

__nds32__dpref_dw. If it occurs, compiler will generate an error message of “the constant
type argument b in __nds32__dpref_w or __nds32__dpref_dw should be in the range

between -16384 and 16383”.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 125

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func(void)

{

 unsigned int a[100];

…

 for (int i=0, i<100, i++)

{

 __nds32__dpref(a, i+1, NDS32_DPREF_SRD); //prefetch a[i+1] for next.

//iteration

 …

 }

 …

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 126

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__dsb

Syntax
void __nds32__dsb()

Description

This intrinsic inserts a DSB instruction into the instruction stream.

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func(void)

{

…

__nds32__setgie_dis(); //disable global interrupt

__nds32__dsb(); //make sure the change in PSW.GIE is seen by any following.

//load/store instructions.

 …

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 127

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__get_current_sp

Syntax
unsigned int __nds32__get_current_sp()

Description

This intrinsic function returns the current stack point value.

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func(void)

{

unsigned int sp;

sp = __nds32__get_current_sp(); //sp is the current stack point.

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 128

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__get_unaligned_dw

__nds32__get_unaligned_w

__nds32__get_unaligned_hw

Syntax
unsigned long long __nds32__get_unaligned_dw(unsigned long long *a)

unsigned int __nds32__get_unaligned_w(unsigned int *a)

unsigned short __nds32__get_unaligned_hw(unsigned short *a)

Where parameter “*a” is a memory address.

Description

These intrinsic functions perform unaligned memory read operation where

__nds32__get_unaligned_dw gets a 64-bit data, __nds32__get_unaligned_w gets a 32-bit

data, and __nds32__get_unaligned_hw gets a 16-bit data.

Privilege Level: ALL

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 129

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__isb

Syntax
void __nds32__isb()

Description

This intrinsic inserts an ISB instruction into the instruction stream.

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func(void)

{

 …

 unsigned int psw=__nds32__mfsr(NDS32_SR_PSW); //get the content of PSW.

 psw = psw | 0x00000040;

 __nds32__mtsr(psw, NDS32_SR_PSW); //set PSW.IT bit.

 __nds32__isb();

 …

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 130

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__isync

Syntax
void __nds32__isync(unsigned int *a)

Where parameter “*a” is an instruction address for serialization.

Description

This intrinsic inserts an ISYNC instruction into the instruction stream.

Privilege Level: ALL

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 131

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__jr_itoff

Syntax
void __nds32__jr_itoff(unsigned int a)

Where parameter “a” is an instruction address to be jumped to.

Description

This intrinsic branches unconditionally to an instruction address a and clears the IT field of the

Processor Status Word (PSW) system register to turn off the instruction address translation

process in the MMU. This intrinsic function guarantees that fetching of the target instruction

will see PSW.IT as 0, thus not going through the address translation process.

Privilege Level: ALL

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 132

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__jr_toff

Syntax
void __nds32__jr_toff(unsigned int a)

Where parameter “a” is an instruction address to be jumped to.

Description

This intrinsic branches unconditionally to an instruction address a and clears the IT and DT

fields of the Processor Status Word (PSW) system register to turn off the instruction and data

address translation process in the MMU. This instruction guarantees that fetching of the target

instruction will see PSW.IT as 0 and PSW.DT as 0, thus not going through the address

translation process.

Privilege Level: ALL

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 133

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__jral_iton

Syntax
void __nds32__jral_iton(unsigned int a)

Where parameter “a” is an instruction address to be jumped to.

Description

This intrinsic branches unconditionally to an instruction address a and sets the IT field of the

Processor Status Word (PSW) system register to turn on the instruction address translation

process in the MMU. The program address of the next sequential instruction (PC+4) is written

to Rt for the return of the function call. This intrinsic function guarantees that fetching of the

target instruction will see PSW.IT as 1, thus going through the address translation process.

Privilege Level: ALL

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 134

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__jral_ton

Syntax
void __nds32__jral_ton(unsigned int a)

Where parameter “a” is an instruction address to be jumped to.

Description

This intrinsic branches unconditionally to an instruction address a and sets the IT and DT fields

of the Processor Status Word (PSW) system register to turn on the instruction and data address

translation process in the MMU. The program address of the next sequential instruction (PC+4)

is written to Rt for the return of the function call. This intrinsic function guarantees that fetching

of the target instruction will see PSW.IT as 1 and PSW.DT as 1, thus going through the address

translation process.

Privilege Level: ALL

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 135

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__msync*

Syntax

A. void __nds32__msync_all()

B. void __nds32__msync_store()

Description

This intrinsic inserts an MSYNC instruction into the instruction stream.

__nds32__msync_all inserts an “MSYNC All” instruction into the instruction stream.

__nds32__msync_store inserts an “MSYNC Store” instruction into the instruction stream.

Privilege Level: ALL

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 136

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__nop

Syntax
void __nds32__nop()

Description

This intrinsic inserts an NOP instruction into the instruction stream.

Privilege Level: ALL

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 137

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__put_unaligned_dw

__nds32__put_unaligned_w

__nds32__put_unaligned_hw

Syntax
void __nds32__put_unaligned_dw(unsigned long long *a, unsigned long long data)

void __nds32__put_unaligned_w(unsigned int *a, unsigned int data)

void __nds32__put_unaligned_hw(unsigned short *a, unsigned short data)

Where:

Parameter “*a” is a memory address.

Parameter “data” is the data to be stored in *a.

Description

These intrinsic functions perform unaligned memory write operation where

__nds32__put_unaligned_dw puts a 64-bit data, __nds32__put_unaligned_w puts a 32-bit

data, and __nds32__put_unaligned_hw puts a 16-bit data.

Privilege Level: ALL

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 138

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__rotr

Syntax
unsigned int __nds32__rotr(unsigned int val, unsigned int ror)

Where:

val is the value to be rotated

ror is the rotation amount.

Description

This intrinsic right-rotates the content of val. The rotation amount is specified by ror. If ror is

a constant, the ROTRI instruction will be inserted into the instruction stream. If ror is a variable,

the ROTR instruction will be inserted. The result is returned.

------------Note------------

1. If ror is a variable, the rotation amount is specified by the low-order 5-bits of ror.

2. The case that constant ror > 31 is not allowed. If it occurs, compiler will generate an error

message of “the argument ror in __nds32__rotri should be in the range 0-31”.

Return Value

The __nds32__rotr intrinsic returns the value of val rotated by ror.

Privilege Level: ALL

Example

#include <nds32_intrinsic.h>

void func(void)

{

…

unsigned int a=0x0000000F;

a = __nds32__rotr(a, 4); //Variable a becomes 0xF0000000 after the right.

//rotation

 …

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 139

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__schedule_barrier

Syntax
void __nds32__schedule_barrier()

Description

This intrinsic creates a point so that instructions before and after the point won’t be merged by

the compiler.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 140

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__setend_big

__nds32__setend_little

Syntax
void __nds32__setend_big()

void __nds32__setend_little()

Description

__nds32__setend_big sets the data endian mode to big endian in the PSW register.

__nds32__setend_little sets the data endian mode to little endian in the PSW register.

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func(void)

{

…

__nds32__setend_big(); //set the data endian mode to big endian.

__nds32__dsb(); //make sure the change in PSW.BE is seen by any following.

 //load/store instructions.

 …

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 141

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__return_address

Syntax
unsigned int __nds32__return_address()

Description

This intrinsic function returns the return address.

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func(void)

{

unsigned int lp;

lp = __nds32__return_address(); //lp is the return address of func.

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 142

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__ret_itoff

Syntax
void __nds32__ret_itoff(unsigned int a)

Where parameter “a” is an instruction address to be jumped to.

Description

This intrinsic branches unconditionally to an instruction address a and clears the IT field of the

Processor Status Word (PSW) system register to turn off the instruction address translation

process in the MMU. This intrinsic function guarantees that fetching of the target instruction

will see PSW.IT as 0 and PSW.DT as 0, thus not going through the address translation process.

Privilege Level: ALL

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 143

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__ret_toff

Syntax
void __nds32__ret_toff(unsigned int a)

Where parameter “a” is an instruction address to be jumped to.

Description

This intrinsic branches unconditionally to an instruction address a and also clears the IT and DT

fields of the Processor Status Word (PSW) system register to turn off the instruction and data

address translation process in the MMU. This intrinsic function guarantees that fetching of the

target instruction will see PSW.IT as 0 and PSW.DT as 0, thus not going through the address

translation process.

Privilege Level: ALL

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 144

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__set_current_sp

Syntax
void __nds32__set_current_sp(unsigned int sp)

Description

This intrinsic function sets the current stack point value.

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func(void)

{

 //adjust sp value to sp - 4

 unsigned int sp;

sp = __nds32__get_current_sp();

sp = sp - 4;

__nds32__set_current_sp(sp);

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 145

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__standby_no_wake_grant

__nds32__standby_wake_grant

__nds32__standby_wait_done

Syntax
void __nds32__standby_no_wake_grant()

void __nds32__standby_wake_grant()

void __nds32__standby_wait_done()

Description

__nds32__standby_no_wake_grant inserts a “STANDBY no_wake_grant” instruction into the

instruction stream.

__nds32__standby_wake_grant inserts a “STANDBY wake_grant” instruction into the

instruction stream.

__nds32__standby_wait_done inserts a “STANDBY wait_done” instruction into the

instruction stream.

Privilege Level: The behaviors of __nds32__standby under different processor operating

modes are listed in the following table.

Privilege level Intrinsic function Andes instruction

User

__nds32__standby_no_wake_grant STANDBY no_wake_grant

__nds32__standby_wake_grant STANDBY no_wake_grant

__nds32__standby_wait_done STANDBY no_wake_grant

Superuser

__nds32__standby_no_wake_grant STANDBY no_wake_grant

__nds32__standby_wake_grant STANDBY wake_grant

__nds32__standby_wait_done STANDBY wait_done

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 146

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__sva

Syntax
unsigned int __nds32__sva(int a, int b)

Where parameter “a” and “b” are the two input integer values to be calculated.

Description & Return Value

If adding a and b results in 32-bit 2’s complement arithmetic overflow, a result of 1 is returned;

otherwise, a result of 0 is returned.

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func(void)

{

 int a = 0x7fffffff;

 int b = 1;

 int c;

 c = __nds32__sva(a, b); //c = 1

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 147

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__svs

Syntax
unsigned int __nds32__svs(int a, int b)

Where parameter “a” and “b” are the two input integer values to be calculated.

Description & Return Value

If subtracting a and b results in 32-bit 2’s complement arithmetic overflow, a result of 1 is

returned; otherwise, a result of 0 is returned.

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func(void)

{

 int a = 0x7fffffff;

 int b = -1;

 int c;

 c = __nds32__svs(a, b); //c = 1

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 148

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__syscall

Syntax
void __nds32__syscall(const unsigned int swid)

Where:

swid is a 15-bit unsigned constant value.

------------Note------------

The case that swid > 32767 is not allowed. If it occurs, compiler would generate an error

message of “the argument swid in __nds32__syscall should be in the range 0-32767”.

Description

__nds32__syscall inserts a SYSCALL instruction into the instruction stream.

Privilege Level: All

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 149

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__teqz

__nds32__tnez

__nds32__trap

Syntax
void __nds32__teqz(const unsigned int a, const unsigned int swid)

void __nds32__tnez(const unsigned int a, const unsigned int swid)

void __nds32__trap(const unsigned int swid)

Where:

parameter “a” is a 32-bit unsigned/unsigned integer variable.

parameter “swid” is a 15-bit constant value.

------------Note------------

The case that swid > 32767 is not allowed. If it occurs, compiler would generate an error

message of “the argument swid in __nds32__teqz/__nds32__tnez/__nds32__trap should

be in the range 0-32767”.

Description

Both __nds32__teqz and __nds32__tnez generate a conditional Trap exception while

__nds32__trap generates an unconditional Trap exception. __nds32__teqz generates a Trap

exception and transfers control to the Trap exception handler if a is equal to 0; __nds32__tnez

generates a Trap exception and transfers control to the Trap exception handler if a is not equal

to 0. The parameter swid is used to distinguish different trap features and usages.

Privilege Level: ALL

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 150

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__wsbh

Syntax
unsigned int __nds32__wsbh(unsigned int a)

Where parameter “a” is the input variable to be swapped.

Description

The bytes within each halfword of a are swapped and the result is returned.

Return Value

The __nds32__wsbh intrinsic returns the halfword swapped value of a.

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func(void)

{

 unsigned int a = 0x03020100;

 unsigned int b;

 b = __nds32__wsbh(a);

 //b should have a value of 0x02030001

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 151

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

12.2.4. Intrinsics for PE1 Instruction

The following table indicates the supported AndesCores for each intrinsic function introduced in

this section.

Intrinsic Function Supported CPUs Page

__nds32__abs Only AndesCores with V3 (but not with V3m/V3m+) architecture 152

__nds32__ave Only AndesCores with V3 (but not with V3m/V3m+) architecture 153

__nds32__bclr Only AndesCores with V3 (but not with V3m/V3m+) architecture 154

__nds32__bset Only AndesCores with V3 (but not with V3m/V3m+) architecture 154

__nds32__btgl Only AndesCores with V3 (but not with V3m/V3m+) architecture 154

__nds32__btst Only AndesCores with V3 (but not with V3m/V3m+) architecture 154

__nds32__clip Only AndesCores with V3 (but not with V3m/V3m+) architecture 156

__nds32__clips Only AndesCores with V3 (but not with V3m/V3m+) architecture 157

__nds32__clz Only AndesCores with V3 (but not with V3m/V3m+) architecture 159

__nds32__clo Only AndesCores with V3 (but not with V3m/V3m+) architecture 158

PE1 ISA is configurable. For all AndesCores, the extension bit “CPU_VER[0]” indicates if PE1 ISA

is supported. If CPU_VER[0] is set, PE1 intrinsic functions are supported. Otherwise, PE1

intrinsic functions are not supported. If you use PE1 intrinsic functions with an AndesCore

where CPU_VER[0] is not set, the core will generate a “Reserved Instruction Exception”.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 152

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__abs

Syntax
int __nds32__abs(int a)

Where parameter “a” is the input integer value to be calculated.

Description

This intrinsic returns the absolute value of a.

Return Value

The __nds32__abs intrinsic returns the absolute value of a.

Privilege Level: ALL

Example
#include “nds32_intrinsic.h”

void func(void)

{

 int a = -4;

 int abs;

 abs = __nds32__abs(a); //compute the absolute value of a.

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 153

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__ave

Syntax
int __nds32__ave(int a, int b)

Where parameter “a” and “b” are the two input integer values to be calculated.

Description

This intrinsic returns the average of a and b.

Return Value

The __nds32__ave intrinsic returns the average of a and b.

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func(void)

{

 int a = 4;

 int b = 2;

 int ave;

 ave = __nds32__ave(a, b); //compute the average of a and b.

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 154

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__bclr

__nds32__bset

__nds32__btgl

__nds32__btst

Syntax
unsigned int __nds32__bclr(unsigned int a, const unsigned int pos)

unsigned int __nds32__bset(unsigned int a, const unsigned int pos)

unsigned int __nds32__btgl(unsigned int a, const unsigned int pos)

unsigned int __nds32__btst(unsigned int a, const unsigned int pos)

Where:

Parameter “a” is the input 32-bit word.

Parameter “pos” is a 5-bit constant, which specifies the bit position for processing.

------------Note------------

The case that pos > 31 is not allowed. If it occurs, compiler will generate an error message of

“the argument pos in __nds32__bclr/__nds32__bset/__nds32__btgl/__nds32__btst

should be in the range 0-31”.

Description

__nds32__bclr clears an individual one bit from the value stored in a.

__nds32__bset sets an individual one bit from the value stored in a.

__nds32__btgl toggles one bit from the value stored in a.

__nds32__btst tests one bit from the value stored in a.

The bit position for these operations is specified by pos. The result is returned.

Return Value

The intrinsics return the processed result from a.

Privilege Level: ALL

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 155

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Example
#include <nds32_intrinsic.h>

void func_bclr(void)

{

 …

 unsigned int a = 0xFFFFFFFF;

 a = __nds32__bclr(a, 31); //clear the MSB of a.

 …

}

void func_bset(void)

{

 …

 unsigned int a = 0;

 a = __nds32__bset(a, 31); //set the MSB of a.

 …

}

void func_btgl(void)

{

 …

 unsigned int a = 0x80000000;

 a = __nds32__btgl(a, 31); //toggles the MSB of a.

 …

}

void func_btst(void)

{

 …

 unsigned int a = 0;

 a = __nds32__btst(a, 31); //test the MSB of a. The tested result is 0.

 …

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 156

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__clip

Syntax
unsigned int __nds32__clip(int a, const unsigned int imm)

Where:

Parameter “a” is the input value.

Parameter “imm” is a 5-bit constant.

------------Note------------

The case that imm > 31 is not allowed. If it occurs, compiler will generate an error message of

“the argument imm in __nds32__clip should be in the range 0-31”.

Description

This intrinsic limits the value of a in a range between 2imm-1 and 0 and returns the limited

result. For example, if imm is 0, the result should be always 0. If the value of a is negative, the

result is 0 as well.

Return Value

The __nds32__clip intrinsic returns the clipped result from a.

Privilege Level: ALL

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 157

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__clips

Syntax
int __nds32__clips(int a, const unsigned int imm)

Where:

Parameter “a” is the input value.

Parameter “imm” is a 5-bit constant.

------------Note------------

The case that imm > 31 is not allowed. If it occurs, compiler will generate an error message of

“the argument imm in __nds32__clips should be in the range 0-31”.

Description

This intrinsic limits the value of a in a range between 2imm-1 and -2imm and returns the limited

result. For example, if imm is 3, the result should be between 7 and -8.

Return Value

The __nds32__clips intrinsic returns the clipped result from a.

Privilege Level: ALL

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 158

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__clo

Syntax
unsigned int __nds32__clo(unsigned int a)

Where parameter “a” is the 32-bit input value.

Description

This intrinsic counts the number of successive ones leading from the most significant bit of a

and returns the result. For example, if bit 31 of a is 0, the result is 0. If a has a value of

0xFFFFFFFF, the result should be 32.

Return Value

The __nds32__clo intrinsic returns the leading one counted result.

Privilege Level: ALL

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 159

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__clz

Syntax
unsigned int __nds32__clz(unsigned int a)

Where parameter “a” is the 32-bit input value.

Description

This intrinsic counts the number of successive zero leading from the most significant bit of a and

returns the result. For example, if bit 31 of a is 1, the result is 0. If a has a value of 0, the result

should be 32.

Return Value

The __nds32__clz intrinsic returns the leading zero counted result.

Privilege Level: ALL

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 160

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

12.2.5. Intrinsics for PE2 Instructions

The following table indicates the supported AndesCores for each intrinsic function introduced in

this section.

Intrinsic Function Supported CPUs Page

__nds32__bse Only AndesCores with V3 (but not with V3m/V3m+) architecture 161

__nds32__bsp Only AndesCores with V3 (but not with V3m/V3m+) architecture 162

__nds32__pbsad Only AndesCores with V3 (but not with V3m/V3m+) architecture 163

__nds32__pbsada Only AndesCores with V3 (but not with V3m/V3m+) architecture 164

PE2 ISA is configurable. For all AndesCores, the extension bit “CPU_VER[2]” indicates if PE2

ISA is supported. If CPU_VER[2] is set, PE2 intrinsic functions are supported. Otherwise, PE2

intrinsic functions are not supported. If you use PE2 intrinsic functions with an AndesCore

where CPU_VER[2] is not set, the core will generate a “Reserved Instruction Exception”.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 161

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__bse

Syntax
void __nds32__bse(unsigned int *t, unsigned int a, unsigned int *b)

Where:

Parameter “a” is a 32-bit word to be extracted.

Parameter “*b” is the extraction configuration variable, which defines the number of bits

extracted and the distance between a(31) and the starting MSB bit position of

the extracted bits in a.

Parameter “*t” stores the extraction result.

Description

This intrinsic behaves as a BSE instruction. Since the extraction configuration variable (*b) and

the extraction result (*t) are pointers, compiler might generate some extra load/store

instructions to load/store the contents of *b and *t. If you have performance concern, use inline

assembly instead.

Return Value

None

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func(void)

{

 …

 unsigned int a = 0xF0F0F0F0; //pattern to be extracted.

 unsigned int b = 0x00000300;

 unsigned int r;

 __nds32__bse(&r, a, &b); //extract bit[31-24] of a.

 //The value of r becomes 0x0000000F.

//The value of b becomes 0x00000324.

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 162

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__bsp

Syntax
void __nds32__bsp(unsigned int *t, unsigned int a, unsigned int *b)

Where:

Parameter “a” is a 32-bit word to be inserted.

Parameter “*b” is the packing configuration variable, which defines the number of bits

inserted and the distance between the 31th bit and the starting MSB bit

position of the inserted bits in the packed result.

Parameter “*t” is the packing result.

Description

This intrinsic behaves as a BSP instruction. Since the packing configuration variable (*b) and the

packing result (*t) are pointers, compiler might generate some extra load/store instructions to

load/store the contents of *b and *t. If you have performance concern, use inline assembly

instead.

Return Value

None

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func(void)

{

 …

 unsigned int a = 0x0000000F; //pattern to be packed.

 unsigned int b = 0x00000300;

 unsigned int r = 0;

 __nds32__bsp(&r, a, &b); //pack bit[7-0] from a to bit[31-24] of r.

 //The value of r becomes 0xF0000000.

//The value of b becomes 0x00000324.

 …

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 163

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__pbsad

Syntax
unsigned int __nds32__pbsad(unsigned int a, unsigned int b)

Where parameter “a” and “b” are the two 32-bit data to be calculated.

Description

This intrinsic subtracts the four un-signed 8-bit elements of a from the four unsigned 8-bit

elements of b. The absolute value of each difference is added together and the result is returned.

Return Value

The __nds32__pbsad intrinsic returns the final absolute value.

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func(void)

{

 unsigned int a = 0x09070605;

 unsigned int b = 0x04020301;

 unsigned int r;

 r = __nds32__pbsad(a, b); //The value of r becomes 17.

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 164

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__pbsada

Syntax
unsigned int __nds32__pbsada(unsigned int acc, unsigned int a, unsigned int b)

Where:

Parameter “a” and “b” are two 32-bit data to be calculated.

Parameter “acc” is the accumulation variable.

Description

This intrinsic subtracts the four un-signed 8-bit elements of a from the four unsigned 8-bit

elements of b. The absolute value of each difference is added together along with acc and the

accumulated result is returned.

Return Value

The __nds32__pbsada returns the final accumulated result.

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func(void)

{

 unsigned int a = 0x09070605;

 unsigned int b = 0x04020301;

 unsigned int r=1;

 r = __nds32__pbsada(r, a, b); //The value of r becomes 18.

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 165

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

12.2.6. Intrinsics for String

The following table indicates the supported AndesCores for each intrinsic function introduced in

this section.

Intrinsic Function Supported CPUs Page

__nds32__ffb Only AndesCores with V3 (but not with V3m/V3m+) architecture 166

__nds32__ffmism Only AndesCores with V3 (but not with V3m/V3m+) architecture 168

__nds32__flmism Only AndesCores with V3 (but not with V3m/V3m+) architecture 169

String ISA is configurable. For all AndesCores, the extension bit “CPU_VER[4]” indicates if String

ISA is supported. If CPU_VER[4] is set, String intrinsic functions are supported. Otherwise,

String intrinsic functions are not supported. If you use String intrinsic functions with an

AndesCore where CPU_VER[4] is not set, the core will generate a “Reserved Instruction

Exception”.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 166

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__ffb

Syntax
int __nds32__ffb(unsigned int a, unsigned int b)

Where

Parameter “a” is the input word.

Parameter “b” is used to match each byte in parameter “a”.

Description

This intrinsic will find the first byte in a that matches b. If b is a constant, the FFBI instruction

will be inserted into the instruction stream. If b is a variable, the FFB instruction will be

inserted.

------------Note------------

1. If b is a variable, the least significant byte in b is used to match each byte in a.

2. If b is a constant, it is prohibited to have “b > 255.” If a violation occurs, compiler will

generate an error message of “the constant type argument b in __nds32__ffb should

be in the range 0-255”.

Return Value

The __nds32__ffb intrinsic returns the location of the first byte in a that matches b. If a

matching byte is found, a non-zero position indication of the first matching byte based on the

current data endian (PSW.BE) mode is returned. If no matching byte is found, a zero is returned.

Please refer to the FFB/FFBI instruction in AndeStar Instruction Set Architecture Manual for

the detailed description about the return value.

Privilege Level: ALL

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 167

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Example
#include <nds32_intrinsic.h>

void func(void)

{

 … //assume data endian mode is little endian.

 unsigned int a = 0x1b2a3d4c;

 unsigned int b = 0x0000003d;

 int r;

 r = __nds32__ffb(a, b); //The value of r becomes -3.

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 168

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__ffmism

Syntax
int __nds32__ffmism(unsigned int a, unsigned int b)

Where parameter “a” and “b” are the two words to be compared.

Description

Each byte in a is matched with each corresponding byte in b. If any mis-matching byte is found,

a non-zero position indication of the first mis-matching byte based on the current data endian

(PSW.BE) mode is returned. If no mis-matching byte is found, a zero is returned. Please refer to

the FFMISM instruction in AndeStar Instruction Set Architecture Manual for the detailed

description about the return value.

Return Value

The __nds32__ffmism intrinsic returns the location of the first byte in a that mismatches the

corresponding byte in b.

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func(void)

{

 … //assume data endian mode is little endian.

 unsigned int a = 0x1b2a3d4c;

 unsigned int b = 0x112a334c;

 unsigned int r;

 r = __nds32__ ffmism(a, b); //The value of r becomes -3.

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 169

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__flmism

Syntax
int __nds32__flmism(unsigned int a, unsigned int b)

Where parameter “a” and “b” are the two words to be compared.

Description

Each byte in a is matched with each corresponding byte in b. If any mis-matching byte is found,

a non-zero position indication of the last mis-matching byte based on the current data endian

(PSW.BE) mode is returned. If no mis-matching byte is found, a zero is returned. Please refer to

the FLMISM instruction in AndeStar Instruction Set Architecture Manual for the detailed

description about the return value.

Return Value

The __nds32__ffmism intrinsic returns the location of the last byte in a that mismatches the

corresponding byte in b.

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func(void)

{

 … //assume data endian mode is little endian.

 unsigned int a = 0x1b2a3d4c;

 unsigned int b = 0x112a334c;

 unsigned int r;

 r = __nds32__ flmism(a, b); //The value of r becomes -1.

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 170

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

12.2.7. Intrinsics for FPU

FPU ISA is configurable. Currently, only N10, N13, N15, D10 and D15 can configure with FPU.

FPU intrinsic functions are supported if FUCOP_EXIST[0], FUCOP_EXIST[31], CPU_VER[4], and

FUCOP_CTL[0] are set. Otherwise, the AndesCore in use will generate a “Reserved Instruction

Exception” or a “FPU disabled Exception.”

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 171

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__fcpynsd

__nds32__fcpynss

__nds32__fcpysd

__nds32__fcpyss

Syntax
double __nds32__fcpynsd(double a, double b)

float __nds32__fcpynss(float a, float b)

double __nds32__fcpysd(double a, double b)

float __nds32__fcpyss(float a, float b)

Where:

Parameter “a” is the input floating point variable whose value will be copied.

Parameter “b” is the input floating point variable whose sign will be copied.

Description

Both __nds32__fcpynsd and __nds32__fcpynss negate and copy the sign of b to a to form a

new value.

Both __nds32__fcpysd and __nds32__fcpyss copy the sign of b to a to form a new value.

Return Value

Both __nds32__fcpynsd and __nds32__fcpynss return the negating and copying result.

Both __nds32__fcpysd and __nds32__fcpyss return the copying result.

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func_fcpynsd (void)

{

 double a = -1.5;

 double b = -1.3;

 r = __nds32__fcpynsd(a, b); //The value of r becomes 1.5.

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 172

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

void func_fcpynss (void)

{

 float a = -1.5;

 float b = -1.3;

 float r;

 r = __nds32__fcpynss(a, b); //The value of r becomes 1.5.

}

#include <nds32_intrinsic.h>

void func_fcpysd (void)

{

 double a = -1.5;

 double b = 1.3;

 double r;

 r = __nds32__fcpysd(a, b); //The value of r becomes 1.5.

}

void func_fcpyss (void)

{

 float a = -1.5;

 float b = 1.3;

 float r;

 r = __nds32__fcpyss(a, b); //The value of r becomes 1.5.

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 173

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__fmfcfg

Syntax
unsigned int __nds32__fmfcfg()

Description

This intrinsic reads and returns the content of FPCFG.

Return Value

The __nds32__fmfcsr intrinsic returns the content of FPCFG.

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func(void)

{

 //this function checks if the SP extension exists.

 unsigned int fpcfg;

 unsigned int sp_exists;

 fpcfg = __nds32__fmfcfg(); //read fpcfg.

 sp_exists = fpcfg & 0x1;

 if (sp_exists)

 printf(“SP extension exists\n”);

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 174

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__fmfcsr

Syntax
unsigned int __nds32__fmfcsr()

Description

This intrinsic reads and returns the content of FPCSR.

Return Value

The __nds32__fmfcsr intrinsic returns the content of FPCSR.

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func(void)

{

 //this function set FPU to round to zero mode.

 unsigned int fpcsr;

 fpcsr = __nds32__fmfcsr(); //read fpcsr

 fpcsr = (fpcsr & 0xfffffffc) | 3;

 __nds32__fmtcsr(fpcsr); //write fpcsr

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 175

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__fmtcsr

Syntax
void __nds32__fmtcsr(unsigned int fpcsr)

Where:

fpcsr is the value to be transferred to FPCSR.

Description

This intrinsic stores the value of fpcsr into FPCSR.

Privilege Level: ALL

Example

See also __nds32__fmtcsr.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 176

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

12.2.8. Intrinsics for TLBOP

For each intrinsic function in this section, the following table indicates the supported memory

management types.

Intrinsic Function Memory Management Types Page

__nds32__tlbop_trd MMU, MPU, SMPU 177

__nds32__tlbop_twr MMU, MPU, SMPU 178

__nds32__tlbop_rwr MMU 179

__nds32__tlbop_rwlk MMU 180

__nds32__tlbop_unlk MMU 181

__nds32__tlbop_pb MMU, SMPU 182

__nds32__tlbop_inv MMU 184

__nds32__tlbop_flua MMU 185

The memory management types are configurable for all AndesCores. The configuration bits and

supported CPUs for each memory management type are listed below:

Memory Management Types Configuration Bits Supported CPUs

No management MMU_CFG.MMPS = 0
N6, N7, N8, E8, N9, N10, N13, N15,

D10, D15

MMU MMU_CFG.MMPS = 2 N10, N13, N15, D10, D15

MPU
MMU_CFG.MMPS = 1 and

MMU_CFG.MMPV < 16
N10, N13, N15, D10, D15

SMPU
MMU_CFG.MMPS = 1 and

MMU_CFG.MMPV >= 16
S8

The intrinsic function descriptions in this section assume the AndesCore in use has MMU as its

memory management type.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 177

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name

__nds32__tlbop_trd (TLB Target Read)

Syntax
void __nds32__tlbop_trd(unsigned int a)

where parameter “a” is the TLB entry number to be read.

Description

This intrinsic reads a specified entry in the software-visible portion of the TLB structure. The

specified entry is indicated by a. The read result is placed in the TLB_VPN, TLB_DATA, and

TLB_MISC registers.

The TLB entry number for a non-fully-associative N sets K ways TLB cache is as follows:

31 log2(N*K) Log2(N*K)-1 log2(N) Log2(N)-1 0

Ignored Way number Set number

Important: Since the TLB_MISC register contains the current process’s Context ID and Access

Page Size information, any use of this intrinsic function is required to save/restore the TLB_MISC

register if you want the current process to run correctly right after this operation.

Privilege Level: Superuser and above

Exceptions: Privilege Instruction

Example

#include <nds32_intrinsic.h>

void func(void)

{

 unsigned int rd_num, tlb_out;

 …

//prepare read entry number.

 …

__nds32__tlbop_trd(rd_num); //read TLB.

__nds32__dsb(); //data serialization barrier.

tlb_out = __nds32__mfsr(NDS32_SR_TLB_VPN); //move read result to tlb_out.

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 178

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name

__nds32__tlbop_twr (TLB Target Write)

Syntax
void __nds32__tlbop_twr(unsigned int a)

where parameter “a” is the TLB entry number to be written.

Description

This intrinsic writes a specified entry in the software-visible portion of the TLB structure. The

entry is indicated by a. The other write operands are in the TLB_VPN, TLB_DATA, and TLB_MISC

registers.

The TLB entry number for a non-fully-associative N sets K ways TLB cache is as follows:

31 log2(N*K) Log2(N*K)-1 log2(N) Log2(N)-1 0

Ignored Way number Set number

If the selected target entry is locked, this intrinsic will overwrite the locked entry and clear the

locked flag.

Privilege Level: Superuser and above

Exceptions: Privilege Instruction

Example

#include <nds32_intrinsic.h>

void func(void)

{

 unsigned int w_num;

 …

//prepare write contents into TLB_VPN, TLB_DATA, TLB_MISC.

//prepare write entry number into w_num.

 …

__nds32__tlbop_twr(rd_num); //write TLB.

__nds32__isb(); //inst serialization barrier.

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 179

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name

__nds32__tlbop_rwr (TLB Random Write)

Syntax
void __nds32__tlbop_rwr(unsigned int a)

where parameter “a” is the data to be written into the TLB_DATA portion of the TLB.

Description

This intrinsic writes a hardware-determined random TLB way in a set determined by the VA (in

TLB_VPN) and page size (in TLB_MISC) in the software-visible portion of the TLB structure. The

input variable “a” specifies the data that will be written into the TLB_DATA portion of the TLB

structure. The other write operands are in the TLB_VPN and TLB_MISC registers.

If the ways in the specified set are all locked during the write operation of this instruction,

depending on the setting in the TBALCK field of the MMU Control system register (MMU_CTL), this

intrinsic may generate a precise or an imprecise “Data Machine Error” exception. Note that the

default value of the TBALCK is to generate the exception.

Privilege Level: Superuser and above

Exceptions: Privilege Instruction, Data Machine Error

Example

#include <nds32_intrinsic.h>

void func(void)

{

 unsigned int pte_addr;

 …

//TLB_VPN and TLB_MISC has been preset.

//prepare PTE address into pte_addr.

 …

__nds32__tlbop_rwr(pte_addr); //write TLB.

__nds32__isb(); //inst serialization barrier.

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 180

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name

__nds32__tlbop_rwlk (TLB Random Write and Lock)

Syntax
void __nds32__tlbop_rwlk(unsigned int a)

where parameter “a” is the data to be written into TLB_DATA portion of the TLB.

Description

Similar to __nds32__tlbop_rwr, this intrinsic writes a hardware-determined random TLB way

in a set determined by the VA (in TLB_VPN) and page size (in TLB_MISC) in the software-visible

portion of the TLB structure. In addition to the write operation, this intrinsic also locks the TLB

entry.

If the ways in the specified set are all locked during the write operation of this instruction,

depending on the setting in the TBALCK field of the MMU Control system register (MMU_CTL), this

intrinsic may generate a precise or an imprecise “Data Machine Error” exception. Note that the

default value of the TBALCK is to generate the exception.

Privilege Level: Superuser and above

Exceptions: Privilege Instruction, Data Machine Error

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 181

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name

__nds32__tlbop_unlk (TLB Unlock)

Syntax
void __nds32__tlbop_unlk(unsigned int a)

where parameter “a” is a virtual address.

Description

This intrinsic unlocks a TLB entry if the VA in the input variable “a” matches the VPN of a set

determined by the VA (in “a”) and page size (in TLB_MISC).

Privilege Level: Superuser and above

Exceptions: Privilege Instruction

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 182

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name

__nds32__tlbop_pb (TLB Probe)

Syntax
void __nds32__tlbop_pb(unsigned int a)

where parameter “a” is a virtual address.

Description

This intrinsic searches all TLB structures (software-visible and software-invisible) for a specified

VA in the input variable “a” and generates an entry number where the VA matches the VPN in

that entry. The search result is returned and has the following format:

31 30 29 28 n n-1 0

NF HW SW Reserved Entry #

If the VA can be found in the software-visible part of the TLB, the “sw” bit will be set. If the VA

can be found in the software-invisible part of the TLB, the “hw” bit will be set. And if the VA

cannot be found in either the software-visible or software-invisible part of the TLB, the “nf” bit

will be set.

The TLB entry number for the non-fully-associative N sets K ways TLB cache is as follows:

Log2(N*K)-1 log2(N) Log2(N)-1 0

Way number Set number

If this instruction encounters a multiple match condition when searching the TLB, a precise

“Data Machine Error” exception will be generated.

Privilege Level: Superuser and above

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 183

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Exceptions: Privilege Instruction

Example
#include <nds32_intrinsic.h>

void func(void)

{

 unsigned int pb_va, tlb_ent_num;

 …

//prepare va into pb_va.

 …

tlb_ent_num = __nds32__tlbop_pb(inv_va);//probe TLB entry information

//examine tlb_ent_num.

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 184

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name

__nds32__tlbop_inv (TLB Invalidate VA)

Syntax
void __nds32__tlbop_inv(unsigned int a)

where parameter “a” is a virtual address.

Description

This intrinsic function flushes the TLB entry that contains the VA in the input variable “a” and

the page size specified in the TLB_MISC register (software-visible and software-invisible) except

the locked TLB entries. The match condition also involves the “G” bit of a PTE entry and the CID

field of the TLB_MISC register. Their matching logic is as follows:

 If “G” is asserted, CID is not part of the match condition.

 If “G” is not asserted, CID is part of the match condition.

If this intrinsic encounters a multiple match condition when searching the TLB, all matched

entries should be invalidated and no “Data Machine Error” exception will be generated.

Privilege Level: Superuser and above

Exceptions: Privilege Instruction

Example
#include <nds32_intrinsic.h>

void func(void)

{

 unsigned int inv_va;

 …

//prepare va into inv_va.

 …

__nds32__tlbop_inv(inv_va); //invalidate TLB entries containing unlk_va.

__nds32__isb(); //inst serialization barrier

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 185

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name

__nds32__tlbop_flua (TLB Invalidate All)

Syntax
void __nds32__tlbop_flua()

Description

This intrinsic invalidates all TLB entries (software-visible and software-invisible) except the

locked TLB entries.

Privilege Level: Superuser and above

Exceptions: Privilege Instruction

Example
#include <nds32_intrinsic.h>

void func(void)

{

__nds32__tlbop_flua(); //write TLB.

__nds32__isb(); //inst serialization barrier.

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 186

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

12.2.9. Intrinsics for Saturation ISA

Saturation ISA is configurable. For all AndesCores, the extension bit “CPU_VER[5]” indicates if

Saturation ISA is supported. If CPU_VER[5] is set, Saturation intrinsic functions are supported.

Otherwise, Saturation intrinsic functions are not supported. If you use Saturation intrinsic

functions with an AndesCore where CPU_VER[5] is not set, the core will generate a “Reserved

Instruction Exception.”

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 187

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__kaddw

Syntax
int __nds32__kaddw(int a, int b)

Where parameter “a” and “b” are two input integer values to be calculated.

Description

__nds32__kaddw adds the signed variables of a and b with Q31 saturation.

Return Value

__nds32__kaddw returns the calculation results. If saturation occurs, PSW.OV will be set.

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func(void)

{

 int a = 0x7fffffff;

 int b = 2;

 int c;

 c = __nds32__kaddw(a, b); //c = 0x7fffffff and PSW.OV will be set.

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 188

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__ksubw

Syntax
int __nds32__ksubw(int a, int b)

Where parameter “a” and “b” are two input integer values to be calculated.

Description

__nds32__ksubw subtracts signed variables a and b with Q31 saturation.

Return Value

__nds32__ksubw returns the calculation results. If saturation occurs, PSW.OV will be set.

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func(void)

{

 int a = 0x7fffffff;

 int b = -2;

 int c;

 c = __nds32__ksubw(a, b); //c = 0x7fffffff and PSW.OV will be set.

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 189

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__kaddh

Syntax
int __nds32__kaddh(int a, int b)

Where parameter “a” and “b” are two input integer values to be calculated.

Description

__nds32__kaddh adds signed variables a and b with Q15 saturation.

Return Value

__nds32__kaddh returns the calculation results. If saturation occurs, PSW.OV will be set.

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func(void)

{

 int a = 0x7fff;

 int b = 2;

 int c;

 c = __nds32__kaddh(a, b); //c = 0x7fff and PSW.OV will be set.

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 190

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__ksubh

Syntax
int __nds32__ksubh(int a, int b)

Where parameter “a” and “b” are two input integer values to be calculated.

Description

__nds32__ksubh subtracts signed variables a and b with Q15 saturation.

Return Value

__nds32__ksubh returns the calculation results. If saturation occurs, PSW.OV will be set.

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func(void)

{

 int a = 0x7fff;

 int b = -2;

 int c;

 c = __nds32__ksubh(a, b); //c = 0x7fff and PSW.OV will be set.

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 191

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__kdmbb

__nds32__kdmbt

__nds32__kdmtb

__nds32__kdmtt

Syntax
int __nds32__kdmbb(unsigned int a, unsigned int b)

int __nds32__kdmbt(unsigned int a, unsigned int b)

int __nds32__kdmtb(unsigned int a, unsigned int b)

int __nds32__kdmtt(unsigned int a, unsigned int b)

Where parameter “a” and “b” are two 32-bit input variables to be calculated.

Description

Multiply the signed Q15 integer contents of two 16-bit data in the corresponding portion of the

two 32-bit variables (a and b) and then double and saturate the Q31 result. When both Q15 input

variables are 0x8000, saturation occurs. In this case, the result will be saturated to 0x7FFFFFFF

and PSW.OV will be set.

For the inputs of the multiply operation, __nds32__kdmbb uses the bottom 16-bit Q15 contents

of a and b, __nds32__kdmbt uses bottom 16-bit Q15 content of a and top 16-bit Q15 content of b,

__nds32__kdmtb uses top 16-bit Q15 content of a and bottom 16-bit Q15 content of b, and

__nds32__kdmtt uses the top 16-bit Q15 contents of a and b.

Return Value

These intrinsics return the Q31 result. If saturation occurs, PSW.OV will be set.

Privilege Level: ALL

Example

#include <nds32_intrinsic.h>

void func(void)

{

 unsigned int a = 0x8000;

 unsigned int b = 0x8000;

 int c;

 c = __nds32__kdmbb(a, b); //c = 0x7fffffff and PSW.OV will be set.

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 192

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__khmbb

__nds32__khmbt

__nds32__khmtb

__nds32__khmtt

Syntax
int __nds32__khmbb(unsigned int a, unsigned int b)

int __nds32__khmbt(unsigned int a, unsigned int b)

int __nds32__khmtb(unsigned int a, unsigned int b)

int __nds32__khmtt(unsigned int a, unsigned int b)

Where parameter “a” and “b” are two 32-bit input variables to be calculated.

Description

Multiply the signed Q15 integer contents of two 16-bit data in the corresponding portion of the

two 32-bit variables (a and b) and then right-shift 15 bits to turn the Q30 result into a Q15

number and saturate the Q15 number as the return value. When both Q15 input variables are

0x8000, saturation occurs. In this case, the result will be saturated to 0x7FFF and PSW.OV will be

set.

For the inputs of the multiply operation, __nds32__khmbb uses the bottom 16-bit Q15 contents

of a and b, __nds32__khmbt uses bottom 16-bit Q15 content of a and top 16-bit Q15 content of b,

__nds32__khmtb uses top 16-bit Q15 content of a and bottom 16-bit Q15 content of b, and

__nds32__khmtt uses the top 16-bit Q15 contents of a and b.

Return Value

These intrinsics return the saturated Q15 result. If saturation occurs, PSW.OV will be set.

Privilege Level: ALL

Example

#include <nds32_intrinsic.h>

void func(void)

{

 unsigned int a = 0x8000;

 unsigned int b = 0x8000;

 int c;

 c = __nds32__khmbb(a, b); //c = 0x7fff and PSW.OV will be set.

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 193

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__kslraw

Syntax
int __nds32__kslraw(int a, signed char b)

Where:

Parameter “a” is the input integer to be shifted.

Parameter “b” is the shift amount.

Description

__nds32__kslraw performs logical left or arithmetic right shift operation with Q31 saturation.

The content of a is left-shifted logically or right-shifted arithmetically based on the value of b. A

positive b means logical left shift and a negative b means arithmetic right shift. The shift amount

is the absolute value of b. The shifted result is saturated to a Q31 number, mainly for the

left-shifted result. If saturation occurs, PSW.OV will be set.

Return Value

__nds32__kslraw returns the Q31 result. If saturation occurs, PSW.OV will be set.

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func(void)

{

 int a = 0x7ffffff0;

 signed char b = 1;

 int c;

 c = __nds32__kslraw(a, b); //c = 0x7fffffff and PSW.OV will be set.

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 194

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__rdov

Syntax
unsigned int __nds32__rdov()

Description & Return Value

This intrinsic function returns PSW.OV bit.

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func(void)

{

 int a = 0x7ffffff0;

 signed char b = 1;

 int c;

 unsigned int d;

 c = __nds32__kslraw(a, b); //c = 0x7fffffff and PSW.OV will be set.

__nds32__dsb();

 d = __nds32__rdov(); //d = 1

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 195

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__clrov

Syntax
void __nds32__clrov()

Description

This intrinsic function clears PSW.OV.

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func(void)

{

 int a = 0x7ffffff0;

 signed char b = 1;

 int c;

 unsigned int d, e;

 c = __nds32__kslraw(a, b); //c = 0x7fffffff and PSW.OV will be set.

 __nds32__dsb();

 d = __nds32__rdov(); //d = 1

 __nds32__clrov();

 __nds32__dsb();

 e = __nds32__rdov(); //e = 1

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 196

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

12.2.10. Intrinsics for Interrupt

The following table indicates the supported AndesCores for each intrinsic function introduced in

this section.

Intrinsic Function Supported CPUs Page

__nds32__setgie_dis All AndesCores 197

__nds32__setgie_en All AndesCores 197

__nds32__gie_dis All AndesCores 198

__nds32__gie_en All AndesCores 198

__nds32__enable_int All AndesCores 199

__nds32__disable_int All AndesCores 199

__nds32__set_pending_swint All AndesCores 201

__nds32__clr_pending_swint All AndesCores 201

__nds32__clr_pending_hwint All AndesCores 202

__nds32__get_pending_int All AndesCores 204

__nds32__get_all_pending_int All AndesCores 206

__nds32__set_int_priority All AndesCores 207

__nds32__get_int_priority All AndesCores 207

__nds32__get_trig_type All AndesCores 209

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 197

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__setgie_dis

__nds32__setgie_en

Syntax
void __nds32__setgie_dis()

void __nds32__setgie_en()

Description

__nds32__setgie_dis disables global interrupts (won’t take effect immediately).

__nds32__setgie_en enables global interrupts (won’t take effect immediately).

These two intrinsic functions generate the SETGIE instruction. You need to further use

__nds32__dsb to make sure the change in PSW.GIE is seen by the subsequent instruction.

Besides PSW.GIE, if you want to modify some other system registers at the same time, these two

intrinsic functions will also provide better performance than __nds32__gie_dis and

__nds32__gie_en.

Privilege Level: Superuser and above

Example
#include <nds32_intrinsic.h>

void func(void)

{

…

__nds32__setgie_dis(); //disable global interrupt.

{other codes to modify system register}

__nds32__dsb(); //make sure the new PSW.GIE value and the modified SR values

are seen by any following instructions.

 …

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 198

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__gie_dis

__nds32__gie_en

Syntax
void __nds32__gie_dis()

void __nds32__gie_en()

Description

__nds32__gie_dis disables global interrupts (will take effect immediately).

__nds32__gie_en enables global interrupts (will take effect immediately).

These two intrinsic functions generate a SETGIE instruction and a DSB instruction. The change

in PSW.GIE takes effect immediately.

Privilege Level: Superuser and above

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 199

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__enable_int

__nds32__disable_int

Syntax
void __nds32__enable_int(enum nds32_intrinsic int_id)

void __nds32__disable_int(enum nds32_intrinsic int_id)

Description

__nds32__enable_int enables an interrupt or exception specified by “int_id”.

__nds32__disable_int disables an interrupt or exception specified by “int_id”.

The change in INT_MASK and INT_MASK2 will be seen by the code after the intrinsic function.

The following table lists all maskable interrupts or exceptions.

Value of “int_id” Interrupt

NDS32_INT_H0 HW0

NDS32_INT_H1 HW1

NDS32_INT_H2 HW2

NDS32_INT_H3 HW3

NDS32_INT_H4 HW4

NDS32_INT_H5 HW5

NDS32_INT_H6 HW6

NDS32_INT_H7 HW7

NDS32_INT_H8 HW8

NDS32_INT_H9 HW9

NDS32_INT_H10 HW10

NDS32_INT_H11 HW11

NDS32_INT_H12 HW12

NDS32_INT_H13 HW13

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 200

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Value of “int_id” Interrupt

NDS32_INT_H14 HW14

NDS32_INT_H15 HW15

NDS32_INT_H16 HW16

NDS32_INT_H17 HW17

NDS32_INT_H18 HW18

NDS32_INT_H19 HW19

NDS32_INT_H20 HW20

NDS32_INT_H21 HW21

NDS32_INT_H22 HW22

NDS32_INT_H23 HW23

NDS32_INT_H24 HW24

NDS32_INT_H25 HW25

NDS32_INT_H26 HW26

NDS32_INT_H27 HW27

NDS32_INT_H28 HW28

NDS32_INT_H29 HW29

NDS32_INT_H30 HW30

NDS32_INT_H31 HW31

NDS32_INT_SWI Software interrupt

NDS32_INT_ALZ
All zero opcode reserved

instruction exception

NDS32_INT_IDIVZE Arithmetic exception (DIV by 0)

NDS32_INT_DSSIM
Default single stepping

interrupt

Privilege Level: Superuser and above

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 201

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__set_pending_swint

__nds32__clr_pending_swint

Syntax
void __nds32__set_pending_swint()

void __nds32__clr_pending_swint()

Description

__nds32__set_pending_swint sets the pending status for the software interrupt (i.e., triggers

the software interrupt).

__nds32__clr_pending_swint clears the pending status for the software interrupt (i.e., clears

the software interrupt).

Note that these two functions are specifically designed for the software interrupt only and no

parameter is needed. For HW interrupts, please use __nds32__clr_pending_hwint(int_id)

instead.

This update of status in INT_PEND will be seen by the code after the intrinsic function.

Privilege Level: Superuser and above

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 202

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__clr_pending_hwint

Syntax
void __nds32__clr_pending_hwint(enum nds32_intrinsic int_id)

Description

__nds32__clr_pending_hwint clears the pending status of a HW interrupt specified by

“int_id” (located in INT_PEND and INT_PEND2). Note that this intrinsic function is designed

only to clear edge-triggered interrupts. In contrast, for level-triggered interrupts, the interrupt

pending status must be cleared from the devices directly and then this new clear status will

automatically propagate to the pending status registers. Consequently, there is no need to clear

the pending status of level-triggered interrupts.

Also note that you should not use this intrinsic function during normal operation because HW

will automatically clear the pending status for you when an edge-triggered interrupt is serviced.

Therefore, this intrinsic function is only used to clear pending bits when you initialize or

reprogram the interrupt controller and interrupt source devices. This clearance is needed

because pending bits can be accidentally set by glitches or noise before proper initialization.

This update of pending status in INT_PEND and INT_PEND2 will be seen by the code after the

intrinsic function.

The possible values for “int_id” are listed in the following table.

Value of “int_id” Interrupt

NDS32_INT_H0 HW0

NDS32_INT_H1 HW1

NDS32_INT_H2 HW2

NDS32_INT_H3 HW3

NDS32_INT_H4 HW4

NDS32_INT_H5 HW5

NDS32_INT_H6 HW6

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 203

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Value of “int_id” Interrupt

NDS32_INT_H7 HW7

NDS32_INT_H8 HW8

NDS32_INT_H9 HW9

NDS32_INT_H10 HW10

NDS32_INT_H11 HW11

NDS32_INT_H12 HW12

NDS32_INT_H13 HW13

NDS32_INT_H14 HW14

NDS32_INT_H15 HW15

NDS32_INT_H16 HW16

NDS32_INT_H17 HW17

NDS32_INT_H18 HW18

NDS32_INT_H19 HW19

NDS32_INT_H20 HW20

NDS32_INT_H21 HW21

NDS32_INT_H22 HW22

NDS32_INT_H23 HW23

NDS32_INT_H24 HW24

NDS32_INT_H25 HW25

NDS32_INT_H26 HW26

NDS32_INT_H27 HW27

NDS32_INT_H28 HW28

NDS32_INT_H29 HW29

NDS32_INT_H30 HW30

NDS32_INT_H31 HW31

Privilege Level: Superuser and above

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 204

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__get_pending_int

Syntax
unsigned int __nds32__get_pending_int(enum nds32_intrinsic int_id)

Description

__nds32__get_pending_int returns the pending status of the interrupt “int_id” (located in

INT_PEND and INT_PEND2).

The possible values for “int_id” are listed in the following table.

Value of “int_id” Interrupt

NDS32_INT_H0 HW0

NDS32_INT_H1 HW1

NDS32_INT_H2 HW2

NDS32_INT_H3 HW3

NDS32_INT_H4 HW4

NDS32_INT_H5 HW5

NDS32_INT_H6 HW6

NDS32_INT_H7 HW7

NDS32_INT_H8 HW8

NDS32_INT_H9 HW9

NDS32_INT_H10 HW10

NDS32_INT_H11 HW11

NDS32_INT_H12 HW12

NDS32_INT_H13 HW13

NDS32_INT_H14 HW14

NDS32_INT_H15 HW15

NDS32_INT_H16 HW16

NDS32_INT_H17 HW17

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 205

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Value of “int_id” Interrupt

NDS32_INT_H18 HW18

NDS32_INT_H19 HW19

NDS32_INT_H20 HW20

NDS32_INT_H21 HW21

NDS32_INT_H22 HW22

NDS32_INT_H23 HW23

NDS32_INT_H24 HW24

NDS32_INT_H25 HW25

NDS32_INT_H26 HW26

NDS32_INT_H27 HW27

NDS32_INT_H28 HW28

NDS32_INT_H29 HW29

NDS32_INT_H30 HW30

NDS32_INT_H31 HW31

NDS32_INT_SWI Software interrupt

Privilege Level: Superuser and above

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 206

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__get_all_pending_int

Syntax
unsigned int __nds32__get_all_pending_int()

Description

__nds32__get_all_pending_int is deprecated due to lack of extensibility, so it should not be

used. For backward compatibility, it only returns the pending status specified in Interrupt

Pending Register (INT_PEND), which consists of only the first 16 HW interrupts (0 ~ 15) and a

software interrupt.

Privilege Level: Superuser and above

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 207

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__set_int_priority

__nds32__get_int_priority

Syntax
void __nds32__set_int_priority(enum nds32_intrinsic int_id, unsigned int prio)

unsigned int __nds32__get_int_priority(enum nds32_intrinsic int_id)

Description

__nds32__set_int_priority sets the priority of an interrupt specified by “int_id”.

__nds32__get_int_priority returns the priority of an interrupt specified by “int_id”.

The updated priority located in INT_PRI and INT_PRI2 will be seen by the code after the

intrinsic function.

The following table lists all programmable interrupts.

Value of “int_id” Interrupt

NDS32_INT_H0 HW0

NDS32_INT_H1 HW1

NDS32_INT_H2 HW2

NDS32_INT_H3 HW3

NDS32_INT_H4 HW4

NDS32_INT_H5 HW5

NDS32_INT_H6 HW6

NDS32_INT_H7 HW7

NDS32_INT_H8 HW8

NDS32_INT_H9 HW9

NDS32_INT_H10 HW10

NDS32_INT_H11 HW11

NDS32_INT_H12 HW12

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 208

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Value of “int_id” Interrupt

NDS32_INT_H13 HW13

NDS32_INT_H14 HW14

NDS32_INT_H15 HW15

NDS32_INT_H16 HW16

NDS32_INT_H17 HW17

NDS32_INT_H18 HW18

NDS32_INT_H19 HW19

NDS32_INT_H20 HW20

NDS32_INT_H21 HW21

NDS32_INT_H22 HW22

NDS32_INT_H23 HW23

NDS32_INT_H24 HW24

NDS32_INT_H25 HW25

NDS32_INT_H26 HW26

NDS32_INT_H27 HW27

NDS32_INT_H28 HW28

NDS32_INT_H29 HW29

NDS32_INT_H30 HW30

NDS32_INT_H31 HW31

Privilege Level: Superuser and above

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 209

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

__nds32__get_trig_type

Syntax
unsigned int __nds32__get_trig_type(enum nds32_intrinsic int_id)

Description

__nds32__get_trig_type returns the trigger type of a HW interrupt specified by “int_id”.

The updated trigger type located in INT_TRIGGER will be seen by the code after the intrinsic

function.

The following table lists all programmable interrupts.

Value of “int_id” Interrupt

NDS32_INT_H0 HW0

NDS32_INT_H1 HW1

NDS32_INT_H2 HW2

NDS32_INT_H3 HW3

NDS32_INT_H4 HW4

NDS32_INT_H5 HW5

NDS32_INT_H6 HW6

NDS32_INT_H7 HW7

NDS32_INT_H8 HW8

NDS32_INT_H9 HW9

NDS32_INT_H10 HW10

NDS32_INT_H11 HW11

NDS32_INT_H12 HW12

NDS32_INT_H13 HW13

NDS32_INT_H14 HW14

NDS32_INT_H15 HW15

NDS32_INT_H16 HW16

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 210

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Value of “int_id” Interrupt

NDS32_INT_H17 HW17

NDS32_INT_H18 HW18

NDS32_INT_H19 HW19

NDS32_INT_H20 HW20

NDS32_INT_H21 HW21

NDS32_INT_H22 HW22

NDS32_INT_H23 HW23

NDS32_INT_H24 HW24

NDS32_INT_H25 HW25

NDS32_INT_H26 HW26

NDS32_INT_H27 HW27

NDS32_INT_H28 HW28

NDS32_INT_H29 HW29

NDS32_INT_H30 HW30

NDS32_INT_H31 HW31

Privilege Level: Superuser and above

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 211

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

12.2.11. Intrinsics for COP ISA Extension
COP ISA extension is configurable. Currently, only N10, N13 and D10 can configure with COP

extension. COP intrinsic functions are supported if CPU_VER[3] is set.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 212

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__cpe1

__nds32__cpe2

__nds32__cpe3

__nds32__cpe4

Syntax
void __nds32__cpe1(const unsigned int cpn, const unsigned int cpi19)

void __nds32__cpe2(const unsigned int cpn, const unsigned int cpi19)

void __nds32__cpe3(const unsigned int cpn, const unsigned int cpi19)

void __nds32__cpe4(const unsigned int cpn, const unsigned int cpi19)

Where:

Parameter “cpn” is the coprocessor number. cpn = {0,1,2,3}

Parameter “cpi19” is the 19-bit immediate that carries an encoded coprocessor command.

Description

These instructions send “cpi19” encoded CPE1~CPE4 coprocessor commands to the coprocessor

“n” for execution.

Return Value

None

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func_cpex (void)

{

 //Send CPE 2 command 0x7bcde to coprocessor 1

__nds32__cpe2(1, 0x7bcde);

//Send CPE 3 command 0x7bcde to coprocessor 1

 __nds32__cpe3(1, 0x7bcde);

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 213

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__cpld

__nds32__cpld_bi

Syntax
void __nds32__cpld(const unsigned int cpn, const unsigned int cprn, unsigned long

long *base, signed int roffset, const unsigned int sv)

void __nds32__cpld_bi(const unsigned int cpn, const unsigned int cprn, unsigned

long long *base, signed int roffset, const unsigned int sv)

Where:

Parameter “cpn” is the coprocessor number. (cpn = {0,1,2,3})

Parameter “cprn” is the ID number of one of the 32 coprocessor registers that receives

 64-bit loaded data from the memory. (0 <= cprn <= 31).

Parameter “base” is the GPR number that contains the base address of this instruction.

Parameter “roffset” is the GPR number that contains the signed offset address of this

 instruction.

Parameter “sv” is the left shift amount for offset addressing. (sv = {0,1,2,3})

Description

__nds32__cpld uses the calculated address of “R[base]+(R[roffset] << sv)” to load a 64-bit

datum into the coprocessor register “cprn”.

__nds32__cpld_bi uses the address of R[base] to load a 64-bit datum into the coprocessor

register “cprn”, and then updates R[base] with the calculated value of “R[base]+(R[roffset] <<

sv)”.

Return Value

None

Privilege Level: ALL

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 214

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Example
#include <nds32_intrinsic.h>

void func_cpld (void)

{

 unsigned long long *base;

 unsigned int roffset;

 //Load 64-bit data from address “base+(roffset<<2)” into

 // coprocessor 1 register 3

__nds32__cpld(1, 3, base, roffset, 2);

 //Load 64-bit data from address “base” into coprocessor 1 register 3

 // Update “base” register with “base+(roffset<<2)”

__nds32__cpld_bi(1, 3, base, roffset, 2);

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 215

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__cpldi

__nds32__cpldi_bi

Syntax
void __nds32__cpldi(const unsigned int cpn, const unsigned int cprn, unsigned long

long *base, const signed int imm12)

void __nds32__cpldi_bi(const unsigned int cpn, const unsigned int cprn, unsigned

long long *base, const signed int imm12)

Where:

Parameter “cpn” is the coprocessor number. (cpn = {0,1,2,3})

Parameter “cprn” is the ID number of one of the 32 coprocessor registers that receives

 64-bit loaded data from the memory. (0 <= cprn <= 31).

Parameter “base” is the GPR number that contains the base address of this instruction.

Parameter “imm12” is the 12-bit immediate signed offset address of this instruction.

Description

__nds32__cpldi uses the calculated address of “R[base]+SignExtend(imm12)” to load a 64-bit

datum into the coprocessor register “cprn”.

__nds32__cpldi_bi uses the address of R[base] to load a 64-bit datum into the coprocessor

register “cprn”, and then updates R[base] with the calculated value of

“R[base]+SignExtend(imm12)”.

Return Value

None

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func_cpldi (void)

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 216

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

{

 unsigned long long *base;

 //Load 64-bit data from address “base+SignExtend(0x450)” into

 // coprocessor 1 register 3

__nds32__cpldi(1, 3, base, 0x450);

 //Load 64-bit data from address “base” into coprocessor 1 register 3

 // Update “base” register with “base+(0x450)”

__nds32__cpldi_bi(1, 3, base, 0x450);

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 217

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__cplw

__nds32__cplw_bi

Syntax
void __nds32__cplw(const unsigned int cpn, const unsigned int cprn, unsigned int

*base, signed int roffset, const unsigned int sv)

void __nds32__cplw_bi(const unsigned int cpn, const unsigned int cprn, unsigned

int *base, signed int roffset, const unsigned int sv)

Where:

Parameter “cpn” is the coprocessor number. (cpn = {0,1,2,3})

Parameter “cprn” is the ID number of one of the 32 coprocessor registers that receive 32-bit

 loaded data from the memory. (0 <= cprn <= 31.)

Parameter “base” is the GPR number that contains the base address of this instruction.

Parameter “roffset” is the GPR number that contains the signed offset address of this

 instruction.

Parameter “sv” is the left shift amount for offset addressing. (sv = {0,1,2,3})

Description

__nds32__cplw uses the calculated address of “R[base]+(R[roffset] << sv)” to load a 32-bit

datum into the coprocessor register “cprn”.

__nds32__cplw_bi uses the address of R[base] to load a 32-bit datum into the coprocessor

register “cprn”, and then updates R[base] with the calculated value of “R[base]+(R[roffset] <<

sv)”.

Return Value

None

Privilege Level: ALL

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 218

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Example
#include <nds32_intrinsic.h>

void func_cplw (void)

{

 unsigned int *base;

 unsigned int roffset;

 //Load 32-bit data from address “base+(roffset<<2)” into

 // coprocessor 1 register 3

__nds32__cplw(1, 3, base, roffset, 2);

 //Load 32-bit data from address “base” into coprocessor 1 register 3

 // Update “base” register with “base+(roffset<<2)”

__nds32__cplw_bi(1, 3, base, roffset, 2);

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 219

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__cplwi

__nds32__cplwi_bi

Syntax
void __nds32__cplwi(const unsigned int cpn, const unsigned int cprn, unsigned int

*base, const signed int imm12)

void __nds32__cplwi_bi(const unsigned int cpn, const unsigned int cprn, unsigned

int *base, const signed int imm12)

Where:

Parameter “cpn” is the coprocessor number. (cpn = {0,1,2,3})

Parameter “cprn” is the ID number of one of the 32 coprocessor registers that receives 32-bit

 loaded data from the memory. (0 <= cprn <= 31)

Parameter “base” is the GPR number that contains the base address of this instruction.

Parameter “imm12 is the 12-bit immediate signed offset address of this instruction.

Description

__nds32__cplwi uses the calculated address of “R[base]+SignExtend(imm12)” to load a 32-bit

datum into the coprocessor register “cprn”.

__nds32__cplwi_bi uses the address of R[base] to load a 32-bit datum into the coprocessor

register “cprn”, and then updates R[base] with the calculated value of

“R[base]+SignExtend(imm12)”.

Return Value

None

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func_cplwi (void)

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 220

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

{

 unsigned int *base;

 //Load 32-bit data from address “base+SignExtend(0x450)” into

 // coprocessor 1 register 3

__nds32__cplwi(1, 3, base, 0x450);

 //Load 32-bit data from address “base” into coprocessor 1 register 3

 // Update “base” register with “base+(0x450)”

__nds32__cplwi_bi(1, 3, base, 0x450);

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 221

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__cpsd

__nds32__cpsd_bi

Syntax
void __nds32__cpsd(const unsigned int cpn, const unsigned int cprn, unsigned long

long *base, signed int roffset, const unsigned int sv)

void __nds32__cpsd_bi(const unsigned int cpn, const unsigned int cprn, unsigned

long long *base, signed int roffset, const unsigned int sv)

Where:

Parameter “cpn” is the coprocessor number. (cpn = {0,1,2,3})

Parameter “cprn” is the ID number of one of the 32 coprocessor registers that provides

 64-bit stored data to the memory. (0 <= cprn <= 31)

Parameter “base” is the GPR number that contains the base address of this instruction.

Parameter “roffset” is the GPR number that contains the signed offset address of this

 instruction.

Parameter “sv” is the left shift amount for offset addressing. (sv = {0,1,2,3})

Description

__nds32__cpsd uses the calculated address of “R[base]+(R[roffset] << sv)” to store a 64-bit

datum from the coprocessor register “cprn” into the memory.

__nds32__cpsd_bi uses the address of R[base] to store a 64-bit datum from the coprocessor

register “cprn” into the memory, and then updates R[base] with the calculated value of

“R[base]+(R[roffset] << sv)”.

Return Value

None

Privilege Level: ALL

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 222

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Example
#include <nds32_intrinsic.h>

void func_cpsd (void)

{

 unsigned long long *base;

 unsigned int roffset;

 //Store 64-bit data to address “base+(roffset<<2)” from

 // coprocessor 1 register 3

__nds32__cpsd(1, 3, base, roffset, 2);

 //Load 64-bit data to address “base” from coprocessor 1 register 3

 // Update “base” register with “base+(roffset<<2)”

__nds32__cpsd_bi(1, 3, base, roffset, 2);

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 223

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__cpsdi

__nds32__cpsdi_bi

Syntax
void __nds32__cpsdi(const unsigned int cpn, const unsigned int cprn, unsigned long

long *base, const signed int imm12)

void __nds32__cpsdi_bi(const unsigned int cpn, const unsigned int cprn, unsigned

long long *base, const signed int imm12)

Where:

Parameter “cpn” is the coprocessor number. (cpn = {0,1,2,3})

Parameter “cprn” is the ID number of one of the 32 coprocessor registers that provides

 64-bit stored data to the memory. (0 <= cprn <= 31).

Parameter “base” is the GPR number that contains the base address of this instruction.

Parameter “imm12” is the 12-bit immediate signed offset address of this instruction.

Description

__nds32__cpsdi uses the calculated address of “R[base]+SignExtend(imm12)” to store a 64-bit

datum from the coprocessor register “cprn” into the memory.

__nds32__cpsdi_bi uses the address of R[base] to store a 64-bit datum from the coprocessor

register “cprn” into the memory, and then updates R[base] with the calculated value of

“R[base]+SignExtend(imm12)”.

Return Value

None

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func_cpsdi (void)

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 224

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

{

 unsigned long long *base;

 //Store 64-bit data to address “base+SignExtend(0x450)” from

 // coprocessor 1 register 3

__nds32__cpsdi(1, 3, base, 0x450);

 //Store 64-bit data to address “base” from coprocessor 1 register 3.

 // Update “base” register with “base+(0x450)”

__nds32__cpsdi_bi(1, 3, base, 0x450);

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 225

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__cpsw

__nds32__cpsw_bi

Syntax
void __nds32__cpsw(const unsigned int cpn, const unsigned int cprn, unsigned int

*base, signed int roffset, const unsigned int sv)

void __nds32__cpsw_bi(const unsigned int cpn, const unsigned int cprn, unsigned

int *base, signed int roffset, const unsigned int sv)

Where:

Parameter “cpn” is the coprocessor number. (cpn = {0,1,2,3})

Parameter “cprn” is the ID number of one of the 32 coprocessor registers that provides

 32-bit stored data to the memory. (0 <= cprn <= 31)

Parameter “base” is the GPR number that contains the base address of this instruction.

Parameter “roffset” is the GPR number that contains the signed offset address of this

 instruction.

Parameter “sv” is the left shift amount for offset addressing. (sv = {0,1,2,3})

Description

__nds32__cpsw uses the calculated address of “R[base]+(R[roffset] << sv)” to store a 32-bit

datum from the coprocessor register “cprn” into the memory.

__nds32__cpsw_bi uses the address of R[base] to store a 32-bit datum from the coprocessor

register “cprn” into the memory, and then updates R[base] with the calculated value of

“R[base]+(R[roffset] << sv)”.

Return Value

None

Privilege Level: ALL

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 226

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Example
#include <nds32_intrinsic.h>

void func_cpsw (void)

{

 unsigned int *base;

 unsigned int roffset;

 //Store 32-bit data to address “base+(roffset<<2)” from

 // coprocessor 1 register 3

__nds32__cpsw(1, 3, base, roffset, 2);

 //Load 32-bit data to address “base” from coprocessor 1 register 3

 // Update “base” register with “base+(roffset<<2)”

__nds32__cpsw_bi(1, 3, base, roffset, 2);

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 227

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__cpswi

__nds32__cpswi_bi

Syntax
void __nds32__cpswi(const unsigned int cpn, const unsigned int cprn, unsigned int

*base, const signed int imm12)

void __nds32__cpswi_bi(const unsigned int cpn, const unsigned int cprn, unsigned

int *base, const signed int imm12)

Where:

Parameter “cpn” is the coprocessor number. (cpn = {0,1,2,3})

Parameter “cprn” is the ID number of one of the 32 coprocessor registers that provides

 32-bit stored data to the memory. (0 <= cprn <= 31)

Parameter “base” is the GPR number that contains the base address of this instruction.

Parameter “imm12” is the 12-bit immediate signed offset address of this instruction.

Description

__nds32__cpswi uses the calculated address of “R[base]+SignExtend(imm12)” to store a 32-bit

datum from the coprocessor register “cprn” into the memory.

__nds32__cpswi_bi uses the address of R[base] to store a 32-bit datum from the coprocessor

register “cprn” into the memory, and then updates R[base] with the calculated value of

“R[base]+SignExtend(imm12)”.

Return Value

None

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func_cpswi (void)

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 228

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

{

 unsigned int *base;

 //Store 32-bit data to address “base+SignExtend(0x450)” from

 // coprocessor 1 register 3

__nds32__cpswi(1, 3, base, 0x450);

 //Store 32-bit data to address “base” from coprocessor 1 register 3.

 // Update “base” register with “base+(0x450)”

__nds32__cpswi_bi(1, 3, base, 0x450);

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 229

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__mfcpd

Syntax
unsigned long long __nds32__mfcpd(const unsigned int cpn, const unsigned int imm12)

Where:

Parameter “cpn” is the coprocessor number. (cpn = {0,1,2,3})

Parameter “imm12” is the 12-bit immediate value that encodes the 64-bit coprocessor state space.

Description

__nds32__mfcpd moves a 64-bit datum from the 64-bit coprocessor state space “imm12” into an

even/odd pair of two 32-bit GPRs.

Return Value

None

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func_mfcpd (void)

{

 unsigned long long data64;

 //Move 64-bit data from coprocessor 1 64-bit state space 10 into two GPRs

data64 = __nds32__mfcpd(1, 10);

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 230

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__mfcpw

Syntax
unsigned int __nds32__mfcpw(const unsigned int cpn, const unsigned int imm12)

Where:

Parameter “cpn” is the coprocessor number. (cpn = {0,1,2,3})

Parameter “imm12” is the 12-bit immediate value that encodes the 32-bit coprocessor state space.

Description

__nds32__mfcpw moves a 32-bit datum from the 32-bit coprocessor state space “imm12” into a

32-bit GPR.

Return Value

None

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func_mfcpw (void)

{

 unsigned int data32;

 //Move 32-bit data from coprocessor 1 32-bit state space 10 into a GPR

data32 = __nds32__mfcpw(1, 10);

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 231

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__mfcppw

Syntax
unsigned int __nds32__mfcppw(const unsigned int cpn, const unsigned int imm12)

Where:

Parameter “cpn” is the coprocessor number. (cpn = {0,1,2,3})

Parameter “imm12” is the 12-bit immediate value that encodes the 32-bit coprocessor state space.

Description

__nds32__mfcppw moves a 32-bit datum from the 32-bit coprocessor privileged state space

“imm12” into a 32-bit GPR.

Return Value

None

Privilege Level: Superuser and above

Example
#include <nds32_intrinsic.h>

void func_mfcppw (void)

{

 unsigned int data32;

 //Move 32-bit data from coprocessor 1 32-bit privileged state space 10

 // into a GPR

data32 = __nds32__mfcppw(1, 10);

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 232

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__mtcpd

Syntax
void __nds32__mtcpd(const unsigned int cpn, unsigned long long source, const

unsigned int imm12)

Where:

Parameter “cpn” is the coprocessor number. cpn = {0,1,2,3}

Parameter “source” a 64-bit datum stored in an even/odd pair of two 32-bit GPRs.

Parameter “imm12” is the 12-bit immediate value that encodes the 64-bit coprocessor state

 space.

Description

__nds32__mtcpd moves a 64-bit datum to the 64-bit coprocessor state space “imm12” from an

even/odd pair of two 32-bit GPRs.

Return Value

None

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func_mtcpd (void)

{

 unsigned long long data64;

 //Move 64-bit data to coprocessor 1 64-bit state space 10 from two GPRs

__nds32__mtcpd(1, data64, 10);

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 233

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__mtcpw

Syntax
void __nds32__mtcpw(const unsigned int cpn, unsigned int source, const unsigned

int imm12)

Where:

Parameter “cpn” is the coprocessor number. (cpn = {0,1,2,3})

Parameter “source” is a 32-bit datum stored in a 32-bit GPR.

Parameter “imm12” is the 12-bit immediate value that encodes the 32-bit coprocessor state

 space.

Description

__nds32__mtcpw moves a 32-bit datum to the 32-bit coprocessor state space “imm12” from a

32-bit GPR.

Return Value

None

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>

void func_mtcpw (void)

{

 unsigned int data32;

 //Move 32-bit data to coprocessor 1 32-bit state space 10 from a GPR

__nds32__mtcpw(1, data32, 10);

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 234

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Name
__nds32__mtcppw

Syntax
void __nds32__mtcppw(const unsigned int cpn, unsigned int source, const unsigned

int imm12)

Where:

Parameter “cpn” is the coprocessor number. (cpn = {0,1,2,3})

Parameter “source” is a 32-bit datum stored in a 32-bit GPR.

Parameter “imm12” is the 12-bit immediate value that encodes the 32-bit coprocessor

 privileged state space.

Description

__nds32__mtcpw moves a 32-bit datum to the 32-bit coprocessor privileged state space “imm12”

from a 32-bit GPR.

Return Value

None

Privilege Level: Superuser and above

Example
#include <nds32_intrinsic.h>

void func_mtcppw (void)

{

 unsigned int data32;

 //Move 32-bit data to coprocessor 1 32-bit privileged state space 10

 // from a GPR

__nds32__mtcppw(1, data32, 10);

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 235

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

13. User/Kernel Space

In general, programs can be written for user-space or kernel-space applications. Any instruction

available to user-space programs is always available to kernel-space programs. On the other

hand, however, instructions available to kernel-space programs are only available to user-space

in a restricted way, and instructions designed to allow user-space programs accessing resources

are only visible to kernel-space programs.

13.1. Privilege Resources
In general, privilege resources refer to the system registers which can only be visible to

kernel-space programs. Please refer to AndeStar System Privilege Architecture Manual in the

package for detailed information.

13.1.1. Configuration System Registers

These system registers are hardwired when hardware configurations are determined before the

hardware is manufactured. Thus, they are read-only registers.

13.1.2. Interruption System Registers

These system registers are properly set when an interruption occurs. Thus, they should be

read-only registers and the updates on these registers must be performed carefully.

13.1.3. MMU System Registers

These system registers are all related to MMU and paging functions. Thus, they should be only

used when MMU is hardware configured and under a full-blown operating system such as Linux.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 236

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

13.1.4. ICE System Registers

These system registers are all related to debugging, especially when using ICE.

13.1.5. Performance Monitoring Registers

These system registers are all related to performance monitoring capability of Andes

Architecture. Normally, they are accessed by the service routines of the underlying operating

system.

13.1.6. Local Memory DMA Registers

These system registers are all related to instruction and data local memory of Andes Architecture

when hardware is configured. Normally, they are accessed by the service routines of the

underlying operating system.

13.1.7. Implementation-Dependent Registers

These system registers are reserved for use by an implementation. Their uses change from an

implementation generation to the next implementation generation. Some implementations may

not use all of them. Please refer to AndeStar System Privilege Architecture Manual in the

package for details.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 237

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

13.2. Privilege Resource Access Instructions
Please refer to AndeStar System Privilege Architecture Manual for the detailed information.

13.2.1. Read from/Write to System Registers

Table 21. Accessing System Registers

Mnemonic Instruction Operation

MFSR rt5, SRIDX Move from System Register rt5 = SR[SRIDX]

MTSR rt5, SRIDX Move to System Register SR[SRIDX] = rt5

13.2.2. Jump Register with System Register Update

Table 22. Instruction Translation On/Off

Mnemonic Instruction Operation

JR.ITOFF rb5
Jump Register and Instruction Translation

OFF

PC = rb5;

PSW.IT = 0;

JR.TOFF rb5 Jump Register and Translation OFF

PC = rb5;

PSW.IT = 0, PSW.DT =

0;

JRAL.ITON rb5

JRAL.ITON rt5, rb5

Jump Register and Link and Instruction

Translation ON

jaddr = rb5;

LP = PC+4 or rt5 =

PC+4;

PC = jaddr;

PSW.IT = 1;

JRAL.TON rb5

JRAL.TON rt5, rb5
Jump Register and Link and Translation ON

jaddr = rb5;

LP = PC+4 or rt5 =

PC+4;

PC = jaddr;

PSW.IT = 1, PSW.DT =

1;

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 238

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

13.2.3. MMU Instructions

Table 23. TLBOP Subtypes

Mnemonic Instruction Operation

TLBOP Ra,

 TargetRead (TRD)
Read targeted TLB entry

Read a specified entry in the

software-visible portion of the

TLB structure.

TLBOP Ra,

 TargetWrite (TWR)
Write targeted TLB entry

Write a specified entry in the

software-visible portion of the

TLB structure.

TLBOP Ra,

 RWrite (RWR)
Write PTE into a TLB entry

Write a hardware-determined

random TLB way in a set

determined by the VA (in

TLB_VPN) and page size (in

TLB_MISC) in the

software-visible portion of the

TLB structure.

TLBOP Ra,

 RWriteLock (RWLK)
Write PTE into a TLB entry and lock

Write a hardware-determined

random TLB way in a set

determined by the VA (in

TLB_VPN) and page size (in

TLB_MISC) in the

software-visible portion of the

TLB structure. Besides, it also

locks the TLB entry.

TLBOP Ra,

 Unlock (UNLK)
Unlock a TLB entry

Unlock a TLB entry if the VA in

the general register Ra

matches the VPN of a set

determined by the VA (in Ra)

and page size (in TLB_MISC).

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 239

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Mnemonic Instruction Operation

TLBOP Rt, Ra,

 Probe (PB)
Probe TLB entry

Search all TLB structures

(software-visible and

software-invisible) for a

specified VA and generate an

entry number where the VA

matches the VPN in that entry.

TLBOP Ra,

 Invalidate (INV)
Invalidate TLB entries

Invalidate the TLB entry

containing VA stored in Rx.

TLBOP FlushAll (FLUA)
Flush all TLB entries except locked

entries

LD_VLPT
Load VLPT page table

(optional instruction)

Load VLPT page table which

always goes through data TLB

translation. On TLB miss,

generate Double TLB miss

exception.

13.3. Privileged Instructions
In general, privileged instructions refer to the instructions that can only be used by kernel-space

programs. Accordingly, those listed in section 13.2 are all privileged instructions. Please refer to

AndeStar System Privilege Architecture Manual for more information about privileged

instructions.

13.3.1. IRET: Interruption Return

This instruction is used to return from interruption to the instruction and a state when the

processor is being interrupted.

13.3.2. SETGIE.E/SETGIU.D: Set Global Interruption Enable

This instruction is used to control the global interrupt enable bit in the PSW register.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 240

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

13.3.3. CCTL: Cache Control

This instruction is used to perform various operations on processor caches. Not all of them are

available to user-space programs. Please refer to section 13.4 below for corresponding

restrictions.

13.3.4. STANDBY: Wait for External Event

This instruction is used for a core to enter a standby state while waiting for the occurrence of

external events. Users have to specify the SubType (wake_grant/no_wake_grant/wait_done)

based on their needs.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 241

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

13.4. Instructions for User-space Program to Access System Resources
In general, instructions for user-space program to access system resources refer to the

instructions that can be used by user-space programs to perform tasks normally required kernel

privilege. Please refer to AndeStar System Privilege Architecture Manual for more information.

13.4.1. DPREF/DPREFI: Data Prefetch

These instructions are used as hints to move data from memory to data cache in advance before

the actual load or store operations reduce memory access latency.

13.4.2. SETEND.B/SETEND.L: Set Data Endian

These instructions are used to control the data endian mode in the PSW register.

13.4.3. CCTL: Cache Control

This instruction is used to perform various operations on processor caches. Only the following

sub-types are available for user-space programs:

Table 24. CCTL Subtypes

Mnemonic Instruction

L1D_VA_INVAL Invalidate L1D cache through VA

L1D_VA_WB Write-back L1D cache through VA

L1D_VA_WBINVAL
Write-back & invalidate L1D cache

through VA

L1I_VA_INVAL Invalidate L1I cache through VA

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 242

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

13.4.4. ISB/DSB: Data/Instruction Serialization Barrier

ISB/DSB are used to serialize pipeline hazards for certain hardware state updates affecting

instruction execution. Section 13.5 discusses serializations related to CPU Control Register

Accesses. There is also serialization related to Cache Control instructions (CCTL). For example,

there is a hazard from CCTL Instruction Cache Invalidate to the subsequent instruction

fetch. Similarly, there is a hazard from CCTL Data Cache Invalidate to the subsequent

load/store instructions. Please consult AndeStar Instruction Set Architecture Manual for

serialization behavior in the sections for the related instructions.

13.4.5. STANDBY: Wait for External Event

This instruction is used for a core to enter a standby state while waiting for the occurrence of

external events. Then encoded wake_grant operand shall be ignored as if no_wake_grant is

specified.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 243

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

13.5. Serializations Related to CPU Control Register Accesses
CPU Control Registers (CCRs) include System Registers, User-Special Registers, and

Coprocessor Control Registers. Certain CCRs have special control bits, which interact with some

instructions. Those are called CCR-related pipeline hazards. In such cases, ISB or DSB may

be needed to ensure that the program results are committed according to the sequential order.

Here are the general occasions to use serialization instructions when accessing CCRs:

 After the instruction writing a CCR (such as MTSR), ISB must be inserted if the CCR is a

register with side-effect to the following instructions.

 Before the instruction reading a CCR (such as MFSR), DSB must be inserted if the CCR

contains the state as a result of executing the preceding instructions.

CCRs are not accessed frequently, but they need to be accessed to achieve some special control

purposes in either user code or kernel code. Please consult AndeStar System Privilege

Architecture Manual for the CCRs of interest and their related pipeline hazards. Here are some

examples:

 Changing the data endian in Program Status Word register $PSW, followed by load/store

instructions.

 Changing Interruption Vector Base in $IVB, followed by instructions generating exceptions.

 Changing Instruction Local Memory (ILM) Base Address in $ILMB, followed by an

instruction jumping to ILM.

 Changing Data Local Memory (DLM) Base Address in $DLMB, followed by load/store

instructions targeting DLM.

 Saturation instructions generating overflow followed by reading of $PSW.

 Changing Instruction Table Base $ITB, followed by ex9.it instructions.

Here are general notes for code snippet involving accesses to CCRs:

 If it is in assembly code, determine if the instructions used have any pipeline hazard

related to the CCRs in question and insert ISB/DSB as appropriate.

 If it is in C code, determine if C operations have any pipeline hazard related to the CCRs

in question and insert ISB/DSB as appropriate.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 244

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

A special note for C code, -Os and some older V3 CPUs (including N968A with

CPU Version<=9, N1068A with CPU Version<=8, and N1337 with CPU

Version<=8):

When a C file is compiled with size optimization (i.e. -Os) using a toolchain for the above V3

family CPUs and $PSW is accessed through inline assembly or intrinsic functions, ISB/DSB

must be inserted as appropriate. This is because some special instructions generated by –Os

optimization may cause $PSW-related pipeline hazard for these CPUs.

Newer V3 CPUs take care of pipeline hazard directly in hardware. So, software programmers

can expect sequential program behavior without using ISB/DSB even when accessing $PSW.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 245

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

14. Linking/Loading

This chapter introduces two supported linking forms: static linking and dynamic linking.

14.1. Static Linking
The –static option will force the link editor to link against static version of C runtime libraries

such as libc.a and libm.a. By default, the link editor will use shared version of C runtime

libraries, such as Libc.so and Libm.so, unless –static option is used.

14.2. Dynamic Linking
This is the default linking mode performed by link editor. Dynamic linking has many advantages

over static linking, such as

1. It produces smaller executables, which consume less storage and memory spaces.

2. Shared Libraries used by executables are upgradable at later time without relinking.

3. Loading and unloading shared libraries are possible at runtime.

However, it also has disadvantages over static linking, such as

1. It starts and runs slower.

2. Shared version of library is bigger than its static counterpart.

14.3. Guidelines to Decide Linking Mode
1. For systems without Linux/shared Libraries, use static linking only.

2. For complicated systems that have many executables, use dynamic linking to save

storage and memory spaces.

3. To make your system upgradable after release, use dynamic linking.

4. To maximize performance or profiling, use static linking.

5. For simple systems with little executables, use static linking to save storage and memory

spaces.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 246

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

15. Linker Script Generation

While GNU linker has a complicated language to specify the image format, Andes offers a rather

simple mechanism for you to specify the memory map and generate the linker script. By

following Andes-defined SaG (Scattering-and-Gathering) format, you can easily create a

description file about image component arrangement required to generate a linker script using

the command option nds_ldsag. The following sections give detailed introduction to SaG script

format and Andes linker script generator LdSaG (nds_ldsag).

15.1. Script Format SaG and Its Syntax
SaG (Scattering-and-Gathering) is an Andes-defined script format for describing the memory

map of an application to the linker. With the file extension .sag, a SaG-formatted description file

can specify:

 the load memory address (LMA).

 the attributes and maximum size of each load region.

 the virtual memory address (VMA), which is also the execution address.

 the attributes and maximum size of each execution region.

 the input sections for each execution region.

15.1.1. BNF Notation for SaG Syntax

The table below summarizes the BNF symbols that are used to describe the SaG syntax.

Symbol Description

"

It is used to indicate a character is used as its literal character. For example, the

definition A“+”B can only be replaced by the pattern A+B while the definition

A+B can be replaced by patterns AB, AAB, or AAAB.

A ::= B
Defines A as B. The ::= notation means “is defined as”. Thus, A::= B"+", for

example, means that A is equivalent to B+.

[A] Optional element A. For example, [A] can be A or “NULL”.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 247

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Symbol Description

A+
Element A can have one or more occurrences. Thus, A+ can be A, AA , or AAA….

A*
Element A can have zero or more occurrences. Thus, A* can be “NULL”, A, AA ,

or AAA….

A | B Either element A or B can occur, but not both. The | notation means “or”.

(A B)

The () notation stands for “grouping”. Therefore, (AB) means element A and B

are grouped together. That is, both A and B have to occur and can be regarded

as one unit.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 248

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

15.1.2. Formal Syntax of SaG Format

15.1.2.1 Overview

The SaG-formatted script is constructed by the hierarchy of load regions, execution regions

and input sections. To start with, define a script as one or more

load_region_description patterns:

ld_script ::=

[header] load_region_description+

header ::=

((“USER_SECTIONS” section_name+)*

| (“DEFINE” variable_name expression)*)

| (“INCLUDE” “file_name”)*)

Note that if there is any user-defined section used in your source files and the section is not

defined in generic linker script, you have to declare it in header. Otherwise, LdSaG

(nds_ldsag) will show a warning message after compiling. In header syntax,

USER_SECTIONS is a keyword and must be upper-cased. The following gives an example:

If you define a section .my_section in the assembly file –
.section .my_section, "ax"

you have to declare the section in the SaG-formatted script like below:
USER_SECTIONS .my_section

LOAD 0x00100000

{

 EXEC +0x00000000

 {

 * (+RO, .my_section)

 * (+RW,+ZI)

 STACK = 0x00700000

 }

}

DEFINE is another form of header syntax. It is also a key word and must be upper-cased.

You can use it to define a local variable and its value. As for expression, it is like c

language expression, such as:
A + B

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 249

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

A + 10

10 +10

INCLUDE, the last form of header syntax, is a key word too and must be upper-cased.

You can use it to include other linker script in the generated script. Note that file_name

must be double-quoted as follows:
INCLUDE "second.ld"

Next, define a load_region_description as a load region name, optionally followed by

attributes or size specifiers, and one or more execution region descriptions:

load_region_description ::=

load_region_name (address|(“+”offset)) [load_attr][max_size]

“{“

 exe_region_description+

“}”

An exe_region_description, in turn, is defined as an execution region name, a base

address specification, optionally followed by attributes or size specifiers, and one or more

input section descriptions:

exe_region_description ::=

exe_region_name (address| (“+” offset)) [exe_attr][max_size]

“{“

 (input_section_description)+

“}”

Last, define an input_section_description as a source module selector pattern

optionally followed by input attributes, an address variable, a load address variable, a stack,

or a VAR variable.

input_section_description ::=

(module_select_pattern [input_attr] “(” input_section_selector (“,”

input_section_selector)* “)”

| ADDR variable

| LOADADDR variable

| STACK “=” num

| VAR variable “=” num

)

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 250

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

15.1.2.2 Load Region Description

Syntax
load_region_description ::=

load_region_name (address|(”+”offset)) [load_attr][max_size]

“{“

 (exe_region_description | exe_overlay_region_description)+

 “}”

where

load_region_name consists of letters, underscore and numbers. Note that the

first character must not be a number.

address can be a decimal or hexadecimal number.

offset can be a decimal or hexadecimal number. If it is used in the

first load region, then +offset means that the base address

begins offset bytes after zero. Otherwise, it means offset

bytes beyond the end of the preceding load region.

load_attr is defined as “ALIGN alignment” where

 ALIGN is a keyword and must be upper-cased.

 alignment can be a two-to-the-power decimal or

hexadecimal number.

max_size specifies the maximum size of the load region. Its value can

be a decimal or hexadecimal number. If the target object

size is bigger than the value, it will report error in linking

time.

exe_region_description Please refer to Section 15.1.2.3.

exe_overlay_region_description Please refer to Section 15.1.2.5.

Example
LOAD_ROM_1 0x0000 ALIGN 0x4 0x10000 ; the LOAD_ROM_1 will be aligned to

; 4-byte aligned address and the max size is 64k

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 251

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

15.1.2.3 Execution Region Description

Syntax
exe_region_description ::=

exe_region_name (address| (“+” offset)) [exe_attr][max_size]

“{“

 (input_section_description)+

“}”

where

exe_region_name consists of letters, underscore and numbers. Note that the

first character must not be a number.

address can be a decimal or hexadecimal number.

offset can be a decimal or hexadecimal number. If it is used in the

first execution region in the load region, then +offset means

that the base address begins offset bytes after the base of

the containing load region. Otherwise, it means offset bytes

beyond the end of the preceding execution region.

exe_attr is defined as “ALIGN alignment” where

 ALIGN is a keyword and must be upper-cased.

 alignment can be a two-to-the-power decimal or

 hexadecimal number.

max_size specifies the maximum size of the load region. Its value can

be a decimal or hexadecimal number. If the target object size

is bigger than the value, it will report error in linking time.

input_section_description Please refer to Section 15.1.2.4.

Example
EXEC_ROM_1 0x0000 ALIGN 0x4 0x8000 ; the EXEC_ROM_1 will be aligned to

; 4-byte aligned address and the max size is 32k

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 252

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

15.1.2.4 Input Section Description

Syntax
input_section_description ::=

(module_select_pattern exclude_description [input_attr] “(”

input_section_selector (“,” input_section_selector)* “)”

| ADDR [NEXT] variable

| LOADADDR [NEXT] variable

| STACK “=” num

| VAR variable “=” expression

| variable “=” ALIGN “(“num”)”

)

where

module_select_pattern is defined as “(filename)+” where

 filename can be any object file name or path of the

object file. The wildcard character *

matches zero or more characters while ?

matches any single character.

exclude_description is defined as EXCLUDE_FILE “(“ (filename)+ ”)” where

 EXCLUDE_FILE is a keyword and must be upper-cased.

For example, * EXCLUDE_FILE(hello.o) (+RO, +RW, +ZI)

is to put all objects except for hello.o into this region.

input_attr is defined as at lease one of the following:

 KEEP is a keyword and must be upper-cased.

It marks the sections that should not be

eliminated when link-time garbage

collection is in use.

 SORT is a keyword and must be upper-cased.

It sorts the module file by name.

input_section_selector is defined as

 (“+” input_section_attr

 [NOLOAD][LMA_FORCE_ALIGN]

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 253

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

| input_section_pattern

 [NOLOAD][input_section_setting]

[input_section_lma_setting]

| group_input_section_pattern)

Where:

 input_section_attr is an attribute selector matched

against the input section attributes. Recognized

selectors include –

 RO: Select both read-only code and read-only data.

 RW: Select both read-write code and read-write data.

 ZI: Select zero initialized data.

 RO-CODE: Select read-only code.

 RO-DATA: Select read-only data.

 RW-CODE: Select read-write code.

 RW-DATA: Select read-write data.

 ISR: Select interrupt service routine.

 NOLOAD marks a section not to be loaded at runtime,

used as the NOLOAD directive in the GNU linker script.

 LMA_FORCE_ALIGN forces the LMA alignment of

sections to be same as the VMA alignment.

 input_section_pattern ::=(.text | .data|…)

where

 .text refers to the following set –

(.text .stub .text.* .gnu.linkonce.t.*)

 (*(.text.*personality*))

 (.gnu.warning)

 … refers to any section name (including user-defined

name) that is matched against the input section

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 254

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

name. It allows wildcard character *, which matches

zero or more characters.

 input_section_setting ::= “(“num”)”
This setting fills input_section_pattern to align the

number that num denotes. num can be a decimal or

hexadecimal number.

 input_section_lma_setting ::=

LMALIGN “(“num”)” | LMA_FORCE_ALIGN

 LMALIGN aligns this section to the number that num

denotes.

 LMA_FORCE_ALIGN forces the LMA alignment of this

section to be the same as the VMA alignment.

 group_input_section_pattern ::=

“[” input_section_pattern

(“,” input_section_pattern)* “]”

Compared with input_section_pattern which

generates respective sections,

group_input_section_pattern generates only one

output section named as the first

input_section_pattern for the latter

input_section_patterns to join, avoiding the gap of

each section. For example,

 Example 1 (input_section_pattern) :

*(.text, .text1)

 Output: .text { *(.text) }

.text1 { *(.text1) }

 Example 2 (group_input_section_pattern):

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 255

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

*([.text, .text1])

  Output: .text { *(.text, .text1) }

In Example 2, *([.text, .text1]) as

group_input_section_pattern generates only one

section while *(.text, .text1) as an

input_section_pattern in Example 1 generates two

sections.

ADDR [NEXT] variable assigns the VMA to a variable. The variable consists of

letters, underscore and numbers. Note that its first

character must not be a number.

 NEXT is a keyword and must be upper-cased. If it is set,

the variable will be the VMA for the start of the next

section rather than that for the end of the previous

section.

LOADADDR [NEXT]

variable

assigns the LMA to a variable. The variable consists of

letters, underscore and numbers. Note that its first

character must not be a number.

 NEXT is a keyword and must be upper-cased. If it is set,

the variable will be the LMA for the start of the next

section rather than that for the end of the previous

section.

STACK “=” num assigns the stack address. STACK will generate PROVIDE

(_stack = num); into output script; num can be a decimal or

hexadecimal number.

VAR variable “=”

expression

defines a variable and its value. The variable consists of

letters, underscore and numbers. Note that its first

character must not be a number.

 The expression here is identical to C expressions, but it

only allows “+, -, *, /”.

variable “=” ALIGN ALIGN sets a variable to the location counter aligned to the

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 256

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

“(“num”)” next alignment boundary. If the variable name is“.”, it

adjusts the location counter to the next alignment

boundary.

Example
 program1.o KEEP (.text, +RO) ; the output section will include the

; program1.0’s .text and read-only sections as its input section and it
; will not be eliminated by gc-section

 ADDR _data_start ; assigns the VMA to _data_start
 LOADADDR _data_start ; assigns the LMA to _data_start
 STACK = 0x200000 ; assigns the stack address to 0x200000
 VAR my_var = 0x1000 ; defines a custom variable my_var and sets its

; value as 0x1000

Notes

 To avoid ambiguity errors, take note not to import input_section_descriptions

using the same module_select_patterns along with duplicate

input_section_selectors in a description file. The following examples present

illegal usages from Example 1 to 3 and legal usages from Example 4 to 6.

 Example 1 (illegal):
*(.text)

*(.data, .text)

 Example 2 (illegal):
*(+RO)

*(+RO-CODE)

 Example 3 (illegal):
hello.o (+RW-DATA)

hello.o (+RW)

 Example 4 (legal):
hello.o (.text)

*(.data, .text)

 Example 5 (legal):
hello.o (+RO)

*(+RO)

 Example 6 (legal):
*(.text)

*(+RO)

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 257

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

15.1.2.5 Execution Overlay Region Description

Syntax
exe_overlay_region_description ::=

exe_region_name (address| (“+” offset)) [exe_attr] “OVERLAY” pagesize

“{“

 (overlay_input_section_description)+

“}”

where

exe_region_name consists of letters, underscore and numbers. Note that the

first character must not be a number.

address can be a decimal or hexadecimal number.

offset can be a decimal or hexadecimal number. If it is used in the

first execution region in the load region, then +offset

means that the base address begins offset bytes after the

base of the containing load region. Otherwise, it means

offset bytes beyond the end of the preceding execution

region.

exe_attr is defined as “ALIGN alignment” where

 ALIGN is a keyword and must be upper-cased.

 alignment can be a two-to-the-power decimal or

 hexadecimal number.

OVERLAY is the keyword and it must be the upper case.

pagesize is the size of each overlay page. When it is set to 0, software

overlay is used.

overlay_input_section_description Please refer to Section 15.1.2.6.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 258

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

15.1.2.6 Overlay Input Section Description

Syntax
overlay_input_section_description ::=

(output_section_name “{“(module_select_pattern [input_attr]+

“(”input_section_selector (“,” input_section_selector)* “)” ”}”) +

where

output_section_name consists of letters, underscore and numbers. Note that the

first character must not be a number.

module_select_pattern is the same as module_select_pattern in Section 15.1.2.4.

input_attr is the same as input_attr in Section 15.1.2.4.

input_section_selector is the same as input_section_selector in Section

15.1.2.4.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 259

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

15.1.2.7 Examples

 Example 1:
LOAD_ROM 0x10000 ; ROM starts from 0x10000

{

 EXEC_RAM 0x10000 ; RAM starts form 0x10000

 {

 *(+RO) ; read-only section's VMA = LMA

 }

 EXEC_ROM 0x20000

 {

 *(+RW,+ZI) ; read-write and zero-init's VMA starts from 0x20000

; LMA follows RO section

 }

}

 Example 2 (overlay):
USER_SECTIONS .overlay0, .overlay1, .overlay2

ROM 0x0 ;LMA start address 0x0

{

 RAM 0x0 ;VMA start address 0x0

 {

 *(+RO, +RW, +ZI) ;put all generic section here

 STACK = 0xA00000 ;assign stack address

 }

}

ROM_OVLY 0x14000 ;LMA start address 80K

{

 RAM2 0x4000 OVERLAY 0x2000 ;VMA start address 0x4000. using overlay,

each overlay pagesize is 0x2000

 {

 .overlay0 {* (.overlay0)} ;LMA 0x14000, VMA 0x4000

 .overlay1 {* (.overlay1)} ;LMA 0x16000, VMA 0x6000

 .overlay2 {* (.overlay2)} ;LMA 0x18000, VMA 0x8000

 }

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 260

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

15.2. Linker Script Generator (LdSaG)
With a SaG-formatted script file in hand, you can use the command option nds_ldsag to

generate a corresponding linker script. Its usage is as follows:

$./nds_ldsag

./nds_ldsag: [option] file

Options:

 -t FILE_NAME //Read the template file, for advanced users only

//The default template file is nds32_template.x in

//Linux and nds32_template.txt in Windows

 -o FILE_NAME //Output a file with the specified file-name

If the output filename is not specified, Andes linker will generate a linker script using the default

output name nds32.ld.

The following example demonstrates how to use nds_ldsag to generate a linker script with

a .sag file:

Step 1 Write a SaG-formatted description file like test.sag below:

LOAD_ROM 0x10000 ; ROM starts from 0x10000

{

 EXEC_RAM 0x10000 ; RAM starts form 0x10000

 {

 *(+RO,+RW,+ZI) ; put read-only, read-write, zero-init

; into ROM and RAM

 }

}

Step 2 Use nds_ldsag to read the description file and output a linker script

in the given filename.

./nds_ldsag test.sag -o myldscript

A linker script is generated; in this case, it’s myldscript.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 261

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Note that nds_ldsag may not support Cygwin path format since it is

built by MinGW toolchain. Thus, DOS path format is recommended if

you have to use an absolute path. For example,

nd_ldsag

C:/Andestech/AndeSight/ide/workspace/hello_world/test.sag –o

C:/Andestech/AndeSight/ide/workspace/hello_world/myldscript

Step 3 Use the newly-generated linker script to compile an object.

nds32le-elf-gcc -Wl,-T,myldscript hello.c -o a.out

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 262

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

16. Object Files

16.1. ELF file
ELF stands for Executable and Linking Format. Currently, this is the only format supported by

Andes toolchains.

There are three types of ELF object files:

1. Relocatable file is for linking with other object files to create an executable or a shared

object file.

2. Executable file is a program suitable for execution.

3. Shared object file is either for link editor to link with other relocatable and shared object

files to create another object file or for dynamic linker to link with an executable and

other shared objects to create a process image.

Please refer to Tool Interface Standard (TIS) Executable and Linking Format (ELF)

Specification for more details.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 263

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

16.2. Examine ELF file
The following tools can be used to examine ELF files:

1. nds32le-elf-readelf displays all kind of information in an ELF file.

2. nds32le-elf-objdump disassembles instructions or dumps section data.

Please refer to the GNU Binutils document for more details.

Here is a partial listing generated by the command line “nds32le-elf-readelf –a libc.a”
File: libc.a(lib_a-_Exit.o)

ELF Header:

 Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00

 Class: ELF32

 Data: 2's complement, little endian

 Version: 1 (current)

 OS/ABI: UNIX - System V

 ABI Version: 0

 Type: REL (Relocatable file)

 Machine: Andes Technology compact code size embedded RISC processor family

 Version: 0x1

 Entry point address: 0x0

 Start of program headers: 0 (bytes into file)

 Start of section headers: 176 (bytes into file)

 Flags: 0x30000042, AABI, Andes ELF V1.4, Andes Star v3.0

 Size of this header: 52 (bytes)

 Size of program headers: 0 (bytes)

 Number of program headers: 0

 Size of section headers: 40 (bytes)

 Number of section headers: 10

 Section header string table index: 7

Section Headers:

 [Nr] Name Type Addr Off Size ES Flg Lk Inf Al

 [0] NULL 00000000 000000 000000 00 0 0 0

 [1] .text PROGBITS 00000000 000034 000000 00 AX 0 0 1

 [2] .data PROGBITS 00000000 000034 000000 00 WA 0 0 1

 [3] .bss NOBITS 00000000 000034 000000 00 WA 0 0 1

 [4] .text._Exit PROGBITS 00000000 000034 000006 00 AX 0 0 2

 [5] .rela.text._Exit RELA 00000000 0002f8 000018 0c 8 4 4

 [6] .comment PROGBITS 00000000 00003a 00002f 01 MS 0 0 1

 [7] .shstrtab STRTAB 00000000 000069 000046 00 0 0 1

 [8] .symtab SYMTAB 00000000 000240 0000a0 10 9 8 4

 [9] .strtab STRTAB 00000000 0002e0 000018 00 0 0 1

Key to Flags:

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 264

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

 W (write), A (alloc), X (execute), M (merge), S (strings)

 I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)

 O (extra OS processing required) o (OS specific), p (processor specific)

There are no section groups in this file.

There are no program headers in this file.
Relocation section '.rela.text._Exit' at offset 0x2f8 contains 2 entries:

 Offset Info Type Sym.Value Sym. Name + Addend

00000000 000005c0 R_NDS32_RELAX_ENT 00000000 .text._Exit + 3000000c

00000002 00000919 R_NDS32_25_PCREL_ 00000000 _exit + 0

The decoding of unwind sections for machine type Andes Technology compact code size embedded

RISC processor family is not currently supported.

Symbol table '.symtab' contains 10 entries:

 Num: Value Size Type Bind Vis Ndx Name

 0: 00000000 0 NOTYPE LOCAL DEFAULT UND

 1: 00000000 0 FILE LOCAL DEFAULT ABS _Exit.c

 2: 00000000 0 SECTION LOCAL DEFAULT 1

 3: 00000000 0 SECTION LOCAL DEFAULT 2

 4: 00000000 0 SECTION LOCAL DEFAULT 3

 5: 00000000 0 SECTION LOCAL DEFAULT 4

 6: 00000000 0 NOTYPE LOCAL DEFAULT 4 $c

 7: 00000000 0 SECTION LOCAL DEFAULT 6

 8: 00000000 6 FUNC GLOBAL DEFAULT 4 _Exit

 9: 00000000 0 NOTYPE GLOBAL DEFAULT UND _exit

No version information found in this file.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 265

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

17. Andes MCUlib

17.1. Features of MCUlib
While Newlib toolchains are used to build for performance and better integration compatibility

with other software packages, MCUlib toolchains are recommended when aiming to build for

better code size. Unlike Newlib, MCUlib doesn’t support reentrancy and has its own printf

implementation. The following section introduces MCUlib-specific printf implementation.

17.2. MCUlib printf Implementation
Name
printf

Syntax
int printf (const char *format, ……)

Where the format has the following form:
%[flag][field width][.precision][modifier][conversion]

And, the following are the characters supported in MCUlib printf’s format specification fields:

Field Supportive Character Description

Flag - left justify, pad right with blanks

 0 pad left with 0 for numerics

 + always print sign, + or -

 # alternate form

 ' ' (blank)

field width (field width)

precision (.precision)

modifier ll long long (64-bit) int

 h short (16-bit) int

 l long (32-bit) int

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 266

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

conversion d,i decimal int

 u decimal unsigned

 o octal

 x,X hex

 f,e,g,F,E,G float

 c char

 s string

 p pointer

Return Value

total number of characters output

Note

1. Normally compiler will use printf() to handle the parameter list of printf() except for

the case that if the parameter list of printf() contains only format string, GCC compiler

will translate it to puts().

2. For any target platform, the lower-level function of printf must be implemented in order

to actually output printf message. In Andes evaluation board, it is done in libgloss with

syscall mechanism. For users’ own target boards, one of the following can be done:

(1) Rewrite “putchar()” function to ensure the message can output to the users’ boards: A

step recommended for MCUlib since it is efficient and can produce the smallest code size.

The prototype of putchar() in MCUlib is the same as that in standard C library. Note

that for MCUlib from BSP v3.1.2 and later versions, both nds_write() and putchar()

must be used to output printf message. The implementation of nds_write() is as

follows:

void nds_write(const unsigned char *buf, int size)

{

 int i;

 for (i = 0; i < size; i++)

 putchar(buf[i]);

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 267

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

NOTE: In addition to printf implementation, nds_write() also can be used to avoid

errors when users use MCUlib and specify “-nostartfiles” option.

(2) Rewrite “_fstat()” and “_write()” function of libgloss: A step that works for MCUlib

from BSP v3.1.0 and earlier versions and Newlib. It provides a syscall mechanism rather

than function call for printf lower layer function implementation. _fstat() will be

called before _write() and its implementation is as follows:

struct stat;

int _fstat(int fd, struct stat *buf)

{

 return 0;

}

The prototype of _write() is shown below and it’s declared in unistd.h. Users have to

handle all necessary jobs (for example, to handle outputs to files or STDERR) in their

own _write() function.

int _write(int __fd, const void *__buf, int __nbyte);

The figure below illustrates the complete printf implementation on users’ boards in

comparison to that on Andes evaluation board. The parts in red fonts denote where need

users’ implementation.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 268

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Figure 9. printf Implementation on Andes Evaluation Board and on Users’ Boards

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 269

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

17.3. Building Libgloss

Step 1 Extract libgloss.tgz under the path BSP_ROOT/demo/:

$ tar -zxvf libgloss.tgz

Find libgloss-nds32-src folder generated under the same directory.

It includes the following items: a Makefile, a README and a

libgloss-nds32 folder containing libgloss source code files.

Step 2 Include the appropriate toolchain in environment variable PATH.

$ export PATH=$PATH:/BSP_ROOT/toolchains/TOOLCHAIN/bin

Step 3 When building libgloss for the first time, please skip this step.

Otherwise, remove the existing object files and libgloss.a in the

current directory.

$ make clean

Step 4 Build libgloss and generate object files.

$ make all

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 270

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

18. Virtual Hosting

Via Virtual Hosting, I/O requests of target boards without I/O devices can be directed to GDB on

the host side, thereby accelerating development processes and shortening development cycles.

For example, testing code coverage (gcov) has to write the code coverage data to files. By Virtual

Hosting, it still can be supported on target boards that don’t have I/O devices.

Virtual Hosting is only supported for V3-family MCUlib and Newlib toolchains (including v3, v3j,

v3f, v3s, v3m and v3m+ toolchains). In BSP v3.2, Virtual Hosting is implemented in ICEman.

Starting from BSP v4.0, a more generic method is used to support Virtual Hosting on both real

boards (ICEman) and the simulator.

To enable Virtual Hosting in BSP v4.0 and later versions, please add “-mvh” option when

invoking GCC to compile and link programs. This option will link the programs with a Virtual

Hosting library where functions redirect I/O requests to ICEman or the simulator. These

requests will then be passed to GDB, invoking I/O services on the host side and sending results

back to ICEman or the simulator.

The following are low-level I/O functions supported by the current Virtual Hosting:

 exit
 open
 close
 read
 write
 lseek
 unlink
 fstat
 stat
 gettimeofday
 rename
 isatty
 system

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 271

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

These I/O functions may be interfered by Ctrl+C, leading Virtual Hosting to fail in the middle of

program execution. Thus, you should have your programs check the return code to see if Virtual

Hosting has been done successfully. You may retry the operation if necessary.

NOTE:

1. If Virtual Hosting is enabled, avoid redirecting the output with putchar() in MCUlib or

_write() in Newlib.

2. Two functions of ANSI C library, _malloc_r() and _free_r(), may be called automatically

when Virtual Hosting is enabled. In MCUlib, if the library memory allocation functions are

not suitable for your application, you should implement your own _malloc_r() and

_free_r(); in Newlib, you have to implement the two functions with _realloc_r().

_malloc_r(), _free_r(), and _realloc_r() are the reentrant variants of malloc(),

free(), and realloc(). The prototypes of these functions are:
void *_malloc_r(struct _reent *reent_ptr, size_t size);

void _free_r(struct _reent *reent_ptr, void *ptr);

void *_realloc_r(struct _reent *reent_ptr, void *ptr, size_t size);

If your functions don’t need the reentrancy, you can skip the _reent_ptr parameter and

implement these functions just as malloc(), free(), and realloc().

These memory allocation functions dynamically allocate and free memory from the heap. In

Andes library implementation, the heap extends from (_end + 1024) until $sp.

 .text

.data

.bss

heap

stack

Reserved

_end

$sp

_end+1024

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 272

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

19. Advanced Programming Optimization

With Andes toolchains, you can use different coding tips to make specialized optimizations for

Andes architecture. This chapter introduces some GCC compiler options to enable optimization,

EX9 optimization and IFC optimization, coding preferences (such as data type “int” and

auto/local variable) and coding techniques for special purposes (such as instruction “max” and

“min,” function with variable arguments and inline assembly language).

19.1. Optimization Options
There are lots of GCC compiler options that deal with optimizations. Here are some common

options and Andes GCC compiler options to control different sorts of optimizations.

19.1.1. Options for Code Size Optimization

 Compiler Options
-Os

Sometimes the code size optimizations may degrade the performance. Therefore, for V3 family

toolchains, three levels of code size reduction are also supported: -Os1, -Os2 and -Os3. Table 25

below provides detailed descriptions for the three levels.

Table 25. Three Code Size Optimization Levels of -Os

Option Code Size Optimization Level

-Os1
Enable minimum code size optimizations.

Performance is still concerned.

-Os2
Enable partial code size optimizations with little

performance concern.

-Os3 (-Os)
Same as -Os option. Enable all code size

optimizations. Performance may seriously drop.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 273

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

19.1.2. Options for Code Speed Optimization

 Compiler Options
-O3

-funroll-loops

-funroll-all-loops

-ftree-switch-shortcut

-malign-functions

-malways-align

The followings are some notes you should pay attention when using these options:

1. For -O3, sometimes the code size may increase dramatically after this option is applied.

This is because -O3 also implies -finline-functions that can expand the content of callee

within the caller (See Table 27 for enabled options at -O3). To avoid such function

inlining optimization, just use the option -fno-inline-functions.

2. For -funroll-loops and -funroll-all-loops, take note that unrolling loop is not

always good for performance on the platform with cache enabled. Therefore, please

refer to the descriptions in Table 26 and use these options wisely to meet your

requirement.

Table 26. Two Loop Unrolling Optimization

Option Description

-funroll-loops

Unroll loops whose number of iterations can be

determined at compile time or upon entry to the

loop. Compiler has a set of heuristics to estimate

whether to unroll loop or not.

-funroll-all-loops

Unroll all loops, even if their number of iterations

is uncertain when the loop is entered. This option

probably makes programs run more slowly if it

loses locality after unrolling.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 274

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

3. For -ftree-switch-shortcut, this is an EXPERIMENTAL option. For some

particular benchmarks involving complex switch statements, this option may be useful

to improve performance.

4. -malign-functions aligns function entries to 4-byte boundaries and

-malways-align enforces 4-byte alignment on jump targets, return addresses and

function entries. The two options are to prevent extra performance penalty due to

misalignment. They are not default applied at -Os (including -Os1, -Os2 and -Os3)

since they may slightly increase code size. However, they are enabled by default at most

of other optimization levels (see Table 27).

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 275

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

19.1.3. Options to Remove Unused Sections

To remove unused sections, the following compiler and linker options have to be enabled at the

same time:

 Compiler Options
-ffunction-sections

-fdata-sections

 Linker Options

(gcc as linker) -Wl,--gc-sections

(ld as linker) --gc-sections

These options are suggested to be used along with the option -Wl,--print-gc-sections (gcc

as linker) or --print-gc-sections (ld as linker). By doing so, you can easily see what sections

are discarded by linker.

19.1.4. Options to Use EX9 Optimization

The “ex9” instruction can be used at link time optimization. To apply EX9 optimization, the

following compiler and linker options have to be enabled at the same time:

 Compiler Option
-mex9

 Linker Options

(gcc as linker) -Wl,--mex9

(ld as linker) --mex9

Notice that -Os enables these options by default. If you do not want to apply EX9 optimization at

link time, use “-Wl,--mno-ex9” (gcc as linker) or “--mno-ex9” (ld as linker) to disable it.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 276

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

19.1.5. Options to Use IFC Optimization

The “ifcall”, “ifcall9” and “ifret16” instructions can be used at link time optimization. To

apply IFC optimization, the following compiler and linker options have to be enabled at the same

time:

 Compiler Option
-mifc

 Linker Options

(gcc as linker) -Wl,--mifc

(ld as linker) --mifc

Notice that -Os enables these options by default. If you do not want to apply IFC optimization at

link time, use “-Wl,--mno-ifc” (gcc as linker) or “--mno-ifc” (ld as linker) to disable it.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 277

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

19.1.6. Notice on Some Optimization Options

Compiler assumes that a valid program must be well-defined by the C language standard. If

there is any undefined behavior in your program, the result is unpredictable and unexpected

consequence could occur anytime. This section describes some optimization options that may

help you to detect undefined behavior of your programs in the early stages. These options may

also be workarounds if you have no choice but to write invalid programs for some reason. Please

be aware of each option’s behavior and effects before leveraging them in various cases.

 -fno-delete-null-pointer-checks
In the C language standard, programs cannot safely dereference null pointers, and no code or

data element resides there. However, this assumption is not true in some cases, especially for

embedded platform. Thus, if you have to dereference the memory address 0x00000000,

please use -fno-delete-null-pointer-checks to tell compiler not to optimize out null

pointer checking.

 -fno-strict-aliasing
In the GCC compiler framework, it enables strict aliasing optimization at -Os, -O2, and -O3,

assuming the strictest aliasing rules applicable to the language being compiled. If a program

contains pointer casting, it may break the strict aliasing rule. Therefore, it would be better

not to use pointer casting in your programs. If you must use it, having the option

-fno-strict-aliasing is recommended. Otherwise, the execution result may be

unexpected.

 -fwrapv
The C language standard considers the overflow of a signed value is undefined behavior. That

means a valid program must never generate signed overflow when computing an expression

and the compiler is able to perform some optimization under such condition. If you must

have invalid code containing signed overflow, please compile it with -fwrapv, which tells the

compiler to treat signed overflow as wrapping.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 278

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

19.1.7. Optimization Levels and Default Applied Options

The following summarizes the optimization levels that Andes compiler supports:

-O0 Do not optimize.

-Og Optimize for speed with better debuggability than -O1

-O1 Optimize for speed

-O2 Optimize more for speed

-O3 Optimize most for speed

-Os1 Optimize for size

-Os2 Optimize more for size

-Os3 Optimize most for size

You can also use Andes target specific options (see Section 2.2.1) to tune performance and code

size. Some target options have been enabled at certain optimization levels by default. Please

refer to Table 27 below for their default applied scenarios:

Table 27. Default Applied GCC Options at Each Optimization Level

Mnemonic -O0 -Og -O1 -O2 -O3 -Os1 -Os2 -Os/-Os3

-fomit-frame-pointer √ √ √ √ √ √ √ √

-fno-delete-null-pointer-

checks
 √ √ √ √ √

-finline-functions √

-mrelax √ √ √ √ √ √ √ √

-malign-functions √ √ √ √

-malways-align √ √ √ √

-minnermost-loop √

-mex9 √

-mifc √

Note that options that are not default applied at some optimization level can still be turned on

when you issue them. Similarly, using -fno-omit-frame-pointer,

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 279

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

-fdelete-null-pointer-checks, -fno-inline-functions, -mno-relax,

-mno-align-functions, -mno-always-align, -mno-innermost-loop, -mno-ex9, and

-mno-ifc can avoid the options in Table 27 from being enabled at their respective “default

applied optimization levels.”

Among the options in Table 27, -mrelax, -mex9, and -mifc are special cases for code generation.

They do not actually change assembly code but generate directives to mark optimization

candidates for linker. GCC then will pass --relax, --mex9, and --mifc to linker to guide it

physically perform particular optimizations. If you ONLY invoke GCC to compile programs into

an object file, these three options have no effect on code generation.

Note that Table 27 describes the option applied scenarios for BSP v4.0 and later versions. For

toolchains from BSP v3.2, these scenarios are mostly the same except for the followings:

1. The option “-fno-delete-null-pointer-checks” is not supported in BSP v3.2.

2. In BSPv3.2, some additional options are enabled by default at certain optimization levels, as

shown below:

Optimization

levels

Default-applied Options

(in addition to those in Table 27)

-O3 -fno-function-cse

-Os1 -fno-jump-tables

-Os2 -fno-jump-tables

-Os/-Os3

-fno-function-cse

-fno-jump-tables

-fno-inline-small-functions

-fno-schedule-insns

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 280

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

19.2. EX9 Optimization

The 16-bit instruction EX9.IT (Execution on Instruction Table) fetches an indexed instruction

from the 512-entry Instruction Table and executes it.

When the “–mex9” option is applied, the compiler will generate the EX9 table and replaces

suitable 32-bit instructions with the 16-bit “ex9.it <INDEX>” with <INDEX> pointing to the

corresponding 32-bit instruction. For example:

NOTE: For v3/3j/v3s/v3f toolchains before BSP v4.0.0, the EX9 table with only one entry is still

generated even when the “–mex9” option isn’t applied. This is for the backward compatibility

issue for debuggers. This overhead has been removed since BSP v4.0.0.

There are two choices for EX9 table implementation:

1. Hardwired in the CPU RTL with no cycle penalty.

2. Residing in memory pointed to by $ITB register for flexibility (2-cycle penalty).
 EX9.IT:

If (Hardwired IT) {

 Inst = Instruction_Table[imm9u];

}else{

 Addr= IT_Base + (index * 4);

 Inst= fetch(Addr);

}

 Execute(Inst);

If the EX9 table resides in memory, $ITB must be initialized with the symbol

_ITB_BASE_ before the EX9 table is used. This action should be done in crt0.S. Please

reference Section 9.3 for details.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 281

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

The EX9 table should also be placed correctly in the linker script file by putting the following line

after RO code:

KEEP(*(.ex9.itable))

However, if the linker script file is generated by the LdSaG utility, you will not need to do

anything.

19.2.1. Export and Import

The Ex9 table can be exported by a linked module and used by another separately-linked module.

This is useful when doing ROM patch. “-Wl, -mexport-ex9” and “-Wl, -import-ex9” options

are used to do export and import. For example,

nds32le-elf-gcc main_program.c -o main_program.out -mex9

-Wl,--mexport-ex9=ex9.table
nds32le-elf-gcc rom_patch.c -o rom_patch.out -mex9

-Wl,--mimport-ex9=ex9.table

rom_patch will use the EX9 table generated when compiling main_program.

19.2.2. EX9 Table Shared by Multiple Separately-linked Program Modules

A more advance usage of EX9 optimization is sharing EX9 table by multiple separately-linked

modules. “-Wl,--mupdate-ex9” option is used to update the imported EX9 table and

“-Wl,--mex9-limit” option can limit the number of EX9 entries used by one module. For

example, if there is a library containing common functions shared by app-1 and app-2, the

following commands can share EX9 table among lib, app-1, and app-2.

nds32le-elf-gcc lib.c -o lib.out --mex9 -Wl,--mgen-symbol-ld-script=lib.ld

-Wl,--mexport-ex9=ex9.itable -Wl,--mex9-limit=100

nds32le-elf-gcc lib.out app-1.c -o app-1.out --mex9 -Wl,-T,lib.ld

-Wl,--mimport-ex9=ex9.itable --mupdate-ex9 -Wl,--mex9-limit=200

nds32le-elf-gcc lib.out app-2.c -o app-2.out --mex9 -Wl,-T,lib.ld

-Wl,--mimport-ex9=ex9.itable -Wl,--mupdate-ex9 -Wl,--mex9-limit=200

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 282

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

If the compiler can find the instructions to translate ex9.it more than the limit of lib(100),

app-1(200), and app-2(200), 1-100 entries is used by lib, 101-300 entries is used by app-1, and

301-500 entries is used by app-2. If lib only use A entries (<100), app-1 only use B entries

(<200), and app-2 only use C entries (<200), lib will use entries from 1 to A, app-1 will use

entries from (A+1) to (A+B), and app-2 will use entries from (A+B+1) to (A+B+C) entries.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 283

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

19.3. IFC (Inline Function Call) Optimization

IFCall9 (16b), IFCall (32b) and IFRet16 (16b) instructions are used to share the common code

sequence as inline functions.

IFC_CTL is the USR register with 2 fields:

IFC_LP records the PC of the instructions after IFCall9/IFCall

IFC_ON is set when IFCall9/IFCall is executed and cleared on IFRet16

IFCall9/IFCall:

behave as a jump-and-link
IFC_LP= return address;

IFC_ON= 1;

IFret16:

If (IFC_ON) {

 Jump to IFC_LP;

 IFC_ON= 0;

}else{

 Do nothing

}

For example:

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 284

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

NOTE:

1. IFCall is a pc-relative instruction, so the distance between caller and callee must be within

its branch range, +-16M. Otherwise, it may cause error.

2. IFC_LP should be correctly saved and restored in interrupt handlers and the context

switching.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 285

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

19.4. Zero Overhead Loop Optimization

ZOL (Zero Overhead Loop) is a set of mechanism in Andes DSP ISA extension to speed up

performance of loops. Rather than exploiting an explicit branch instruction, it improves the loop

performance by setting up the loop starting address, the loop ending address and the loop count

number.

You can use the compiler option “-mext-zol” to generate code with zero overhead loops. For

example, given a function “foo” like below,

void foo(int size, int *arr)

{

 int i;

 for (i = 0;i < size;i++)

 arr[i] = i;

}

Its compilation results without and with -mext-zol are listed respectively as follows:

When compiled with -O -O -mext-zol

Compilation result

foo:

 blez $r0, .L2

 movi55 $r5, 0

.L3:

 swi333.bi $r5, [$r1],
4

 addi45 $r5, 1

 bnes38 $r0, .L3

 .align 2

.L2:

 ret5

foo:

 blez $r0, .L2

 movi55 $r2, 0

 sub45 $r0, $r2

 mtlbi .L3

 mtlei .L5

 mtusr $r0, LC

 isb

.L3:

 swi333.bi $r2, [$r1], 4

.L5:

 addi45 $r2, 1

 .align 2

.L2:

 ret5

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 286

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Shown in the above table, the compilation result with ZOL saves a conditional branch, which is a

saving of 2~3 cycles per iteration (assuming swi333.bi and addi45 is one cycle and bnes38 is

two cycles) and a performance gain up to 200%.

19.4.1. Zero Overhead Loop Optimization Limitations

Both the hardware and compiler have limitations on performing the zero overhead loop

optimization. From the hardware side, Andes architecture doesn’t allow nested zero overhead

loops. For a function containing a nested loop like below, the hardware can only perform the

zero overhead loop optimization on one loop, either the outer or the nested, while the compiler

prefers it on the outer for minimizing initialization overhead.

void bar(int size1, int size2, int **arr, int val)

{

 int i, j;

 for (i = 0;i < size1;i++) // Outer Loop

 for (j = 0;j < size2;j++) // Nested Loop

 arr[i][j] = val;

}

On the other side, the compiler doesn’t have enough information about whether the inner

function uses hardware loops or not. Thus, the loops for the ZOL optimization must contain

function calls that can be inline. The following code fragment, then, won’t allow the ZOL

optimization.

int bar(int n);

void foo(int size, int *arr, int val)

{

 int i;

 for (i = 0;i < size;i++)

 arr[i] = bar (val);

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 287

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

19.4.2. Disable ZOL Optimization for Specific Functions or Loops

Even though the zero overhead loop optimization significantly increases the performance of

loops in most cases, it incurs initialization cost of at least 4 extra instructions and 5~10 cycles,

varied by architecture. That is, not every loop can benefit from this optimization. Since the

compiler doesn’t have enough runtime information about the number of iteration and

-mext-zol is a global flag to the compilation unit (i.e. single file), a function attribute

“no_ext_zol” and a built-in function “__nds32__no_ext_zol” are introduced here to disable

the ZOL optimization for a specific function and loop respectively.

The function attribute “no_ext_zol” can disable the ZOL optimization for specific functions

when the compilation flag -mext-zol is applied. See the following example for its usage:

int foo(int, int *, int) __attribute__((no_ext_zol));

int foo(int size, int *arr, int val)

{

 int i;

 for (i = 0;i < size;i++)

 arr[i] = val;

}

The function “__nds32__no_ext_zol” can disable the ZOL optimization for specific loops. The

following is an example that the compiler tends to perform the ZOL optimization on the outer

loop but that on the inner loop is more profitable. In this case, the function

“__nds32__no_ext_zol” can be used to disable the ZOL optimization for the outer loop.

 #include "nds32_intrinsic.h"

void bar(int size1, int size2, int **arr, int val)

{

 int i, j;

 for (i = 0;i < size1;i++)

 {

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 288

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

 __nds32__no_ext_zol ();

 for (j = 0;j < size2;j++)

 arr[i][j] = val;

 }

}

For a function that has two loops but only one loop can gain from the ZOL optimization, you can

use “__nds32__no_ext_zol” to disable the ZOL optimization for a loop too, as exemplified

below:

#include "nds32_intrinsic.h"

void foo(int size, int *arr, int val)

{

 int i;

 for (i = 0;i < size;i++)

 arr[i] = val;

 for (i = 0;i < size/2;i++)

 {

 __nds32__no_ext_zol ();

 arr[i] = arr[i] + 3;

 }

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 289

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

19.5. Instruction Max/Min of Performance Extension
AndeStar ISA performance extension offers instruction "max" and "min" to write maximum and

minimum values from source registers to destination registers. Andes GCC takes advantage of

the two instructions to generate optimized code for better speed and code size. To evoke "max"

and "min" instructions, use ternary operators in the following formats:

c = (a > b) ? a : b; // generate instruction max; same for (a>=b)

c = (a < b) ? a : b; // generate instruction min; same for (a<=b)

Example-max-min-1 demonstrates the use of ternary operators to evoke instruction “max” and

“min”:

/* Example-max-min-1 */

int func_max_min_1 (int i, int j, int k, int l)

{

 int max = (i > j) ? i : j;

 int min = (k <= l) ? k : l;

 return max + min;

}

Example-max-min-1 will be compiled with the compiler option "-O1" to the following assembly

code if Andes GCC is configured to use instructions of performance extension:

func_max_min_1:

 ! begin of prologue

 ! end of prologue

 max $r0, $r1, $r0

 min $r2, $r2, $r3

 add45 $r0, $r2

 ! begin of epilogue

 ret5

 ! end of epilogue

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 290

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

19.6. Primitive Data Type "int"
Since most instructions are designed for 32-bit operands in 32-bit CPU architecture, it is usually

better to declare a variable a type at least 32 bits long. That is, when the size of variable storage is

not a concern, the primitive data type "int" is preferred to those less than 32 bits. The example

below shows the outcome when declaring a variable a type less than 32 bits.

/* Example-type-1 */

int

func_type_1 (int a, int b, int c)

{

 short e1, e2;

 e1 = a - b;

 e2 = a + b;

 if (e1 > e2)

 return 13;

 return 17;

}

The following assembly code is generated when Example-type-1 is compiled with the compiler

option "-O1":

func_type_1:

 ! begin of prologue

 ! end of prologue

 zeh33 $r0, $r0

 zeh33 $r1, $r1

 sub333 $r2, $r0, $r1

 add5 $r0, $r1

 seh33 $r2, $r2

 seh33 $r0, $r0

 slts45 $r0, $r2

 movi55 $r0, 13

 movpi45 $r1, 17

 cmovz $r0, $r1, $ta

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 291

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

 ! begin of epilogue

 ret5

 ! end of epilogue

Since the variables "e1, e2" are declared as type "short" in Example-type-1, the instruction

"seh33" is required to extend the effective bits of a register to 32 bits so that it can serve as a

32-bit operand for instructions "slts45" and "cmovz".

In contrast, in Example-type-2, "e1, e2" are declared as type "int".

/* Example-type-2 */

int

func_type_2 (int a, int b, int c)

{

 int e1, e2;

 e1 = a - b;

 e2 = a + b;

 if (e1 > e2)

 return 13;

 return 17;

}

The generated assembly code below shows that no extra instruction is needed to adjust the

property of variables "e1, e2" for instructions "slts45" and "cmovz".

func_type_2:

 ! begin of prologue

 ! end of prologue

 sub333 $r2, $r0, $r1

 add45 $r0, $r1

 slts45 $r0, $r2

 movi55 $r0, 13

 movpi45 $r1, 17

 cmovz $r0, $r1, $ta

 ! begin of epilogue

 ret5

 ! end of epilogue

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 292

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

19.7. Addressing Space for Programs

It is easy to locate local variables because they are only accessed via frame pointer or stack

pointer within a stack frame and will be destroyed at the end of the function. However, it is not

the case for global variables, which are used to store information shared among functions and

tasks. In AndesCore CPU with 32-bit addressing space, accessing a global variable requires

several instructions to construct full 32-bit address. Similar issues also appear on function call.

To call a module all over 32-bit addressing space, many instructions are also needed to calculate

32-bit address and then jump to the module via a register.

Instructions that always construct full 32-bit address could be serious issue on performance and

code size. Fortunately, most programs do not require complete 32-bit addressing space because

of limited resources (e.g. ROM size) in practice. You may improve the overall performance and

code size simply with the concept of small data area or using different code models in compiler

option.

19.7.1. Small Data Area and Relaxation

Small data area, abbreviated to SDA, is created to place global variables which can be addressed

by an offset plus register $gp. With the help of SDA, the two to three instructions generated to

access a global variable in SDA in compilation time can shrink to single instruction by relaxation

optimization in link time.

Andes SDA has the section .sdata_{b|h|w|d} for initialized global variables and

section .sbss_{b|h|w|d} for uninitialized ones in default linker script. Section suffix

_{b|h|w|d} is used to denote the size of a global variable to be {1|2|4|8} bytes respectively.

For uninitialized global variables, compiler will generate them as common symbols (.comm

symbol, length). After linking, the symbols will be put into .sbss_x. If you are an assembly

programmer, you can put your symbols into .sdata_x and .sbss_x for relaxation optimization.

To understand how relaxation works in link time, here is an example:

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 293

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

/* Example-global-1 */

int i;

int j;

int k;

int l;

int func_global_1 ()

{

 return i + j + k + l;

}

int main ()

{

 return func_global_1 ();

}

To construct full 32-bit address for each global variable, it may generate assembly code like

below that takes at least 8 instructions to load values into registers:

func_global_1:

 ! begin of prologue

 ! end of prologue

 sethi $r2, hi20(i)

 lwi $r1, [$r2 + lo12(i)]

 sethi $r3, hi20(j)

 lwi $r0, [$r3 + lo12(j)]

 add45 $r1, $r0

 sethi $r4, hi20(k)

 lwi $r0, [$r4 + lo12(k)]

 add45 $r1, $r0

 sethi $r5, hi20(l)

 lwi $r0, [$r5 + lo12(l)]

 add45 $r0, $r1

 ! begin of epilogue

 ret5

 ! end of epilogue

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 294

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Incorporating the concept of small data area, it can generate the following assembly code where

global variables "i", "j", "k", and "l" satisfy the size and type requirement of section .sbss_w of

SDA and can be allocated there.
 .comm i,4,4

 .comm j,4,4

 .comm k,4,4

 .comm l,4,4

After applying relaxation optimization with linker, instructions to access these global variables

are reduced to those with addressing of an offset plus $gp.

005000ec <func_global_1>:

 5000ec: 3c 1c 00 87 lwi.gp $r1,[+#0x21c]

 5000f0: 3c 0c 00 84 lwi.gp $r0,[+#0x210]

 5000f4: 88 20 add45 $r1,$r0

 5000f6: 3c 0c 00 86 lwi.gp $r0,[+#0x218]

 5000fa: 88 20 add45 $r1,$r0

 5000fc: 3c 0c 00 85 lwi.gp $r0,[+#0x214]

 500100: 88 01 add45 $r0,$r1

 500102: dd 9e ret5 $lp

The offset of variables in SDA is limited to +/- 256KB for all scalar data type of V3 architecture.

It is unknown if a global variable can be fitted in SDA until linking is done.

With the manipulation of relaxation optimization and SDA, the Example-global-1 can reduce the

instruction counts. However, due to the size limitation of instruction immediate, advantages of

relaxation optimization and SDA don’t always apply to global variables in large programs. In

such case, it is suggested to write programs that enclose variables in a global structure. That way,

the variables can be aggregated and compiler is able to access them with “base + offset” manner.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 295

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

19.7.2. Code Models

In Andes toolchains, you can tell compiler which scale your programs and data are with the

option –mcmodel=[small|medium|large]. Specifying precise code models with this option is

helpful for code generation. With clear information, compiler may directly generate smaller and

better instructions without relax transformation by linker. The following are three supported

code models:

 -mcmodel=small (code model: 16M text, 512K data+rodata)

This option is generally suitable for most MCU programs. It tells compiler that all the

function modules must be within 16M range and the global variables, including read-only

data, are within 512K range. Compiler assumes that all the data is in the small data area and

generates addressing with offset plus $gp.

 -mcmodel=medium (code model: 16M text, 512K data, 4G rodata)

This is the default setting in Andes toolchains. For read-only data beyond 512K of small data

area, compiler will construct full 32-bit address when accessing them (constant variables).

The function modules are still within 16M range of text section; other global variables are

within 512K range of small data area and accessible with $gp relative instruction.

 -mcmodel=large (code model: 4G text, 4G data + rodata)

This is the option for large programs. All the text and data are all over complete 32-bit

addressing space. Compiler uses the most conservative strategy to generate worse assembly

code, leaving all the relaxation works to linker.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 296

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

19.8. Link Time Optimization in GCC
Link Time Optimization (LTO) is a very aggressive optimization implemented by GCC. It gives

GCC the capability of emitting its internal representation into object files, so that all the different

compilation units that make up a single executable can be optimized as a single module.

19.8.1. Using LTO

If you would like to apply LTO on your program, make sure you use GCC to complete all the

works of building a program, including compilation and linking. Then, compiler is able to

interact with linker plugin to perform optimization.

The option -flto triggers the main LTO features. Given several source files like below, you can

create an executable with this option:

 $ gcc -O2 -flto -c f1.c

 $ gcc -O2 -flto -c f2.c

 $ gcc -O2 -flto -o f f1.o f2.o

or
 $ gcc -O2 -flto -o f f1.c f2.c

19.8.2. Notice When Applying LTO

Because LTO takes all objects as a single module to perform optimizations, there are some

limitations that you need to be aware of:

 Avoid defining the same module name as it’s presented in the library. This may confuse LTO

when linking objects.

 If you implement a module that may be called from the MCU standard library (e.g. the weak

function nds_write() redirected from libc.a), it is suggested to use

__attribute__((used)) to prevent it from being optimized out by LTO.

 Please make sure all the modules of the project are included in the build process. If your

project has something to do with patch code, which is invisible during LTO process, the

patch code module is not supposed to be compiled with the -flto option.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 297

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

19.9. Function with Variable Number of Arguments
When there is a need to write a function with variable number of arguments like “prinf()”, an

ellipsis (“…”) can be used to replace the optional arguments. The declaration of such a function

requires at least one named argument before the ellipsis to denote the prototype of the list of

anonymous arguments, such as “int func(int x, …)”.

To load the values of the anonymous arguments, header file "stdarg.h" has to be included first

to introduce a special data type va_list and three macros va_start(), va_arg(), and

va_end() that manipulate the variable number of arguments.

Data type "va_list" is used to record the current information of the list of anonymous

arguments. It has to be initialized by va_start() with the named argument right before the

ellipsis. After va_start() is called, the value of each anonymous argument can be loaded

sequentially based on the information of "va_list". For each va_start(), va_end() must be

invoked in the same function to clean up the argument list allocated in the memory. Between a

pair of va_start() and va_end(), va_arg() is called successively to traverse the argument list

one by one. Thereby the value of a pointed argument from the list can be loaded by the current

variable with a specified type. The below gives an example of how va_list, va_start(),

va_arg(), and va_end() work in a function that accepts variable number of arguments.

/* Example-va-1 */

#include <stdarg.h>

void my_printf (char* format, ...)

{

 va_list ap;

 int i;

 int c;

 long long int ll;

 double f;

 va_start (ap, format);

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 298

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

 i = va_arg (ap, int);

 /* 'char' is promoted to 'int' when passed through '...'

 so you should pass 'int' not 'char' to 'va_arg' */

 c = va_arg (ap, int);

 ll = va_arg (ap, long long int);

 /* 'float' is promoted to 'double' when passed through '...'

 so you should pass 'double' not 'float' to 'va_arg' */

 f = va_arg (ap, double);

 printf (format, i, c, ll, f);

 va_end (ap);

}

int main (int argc, char** argv)

{

 my_printf ("Hello: %d %c %lld %f\n", 23, (char) 'X', (long long int) 12399,

3.4f);

 return 0;

}

In Example-va-1, one variable "ap" is declared as type "va_list", and it is initialized by

va_start() with the last named argument "format". Statement va_arg(ap, int) returns a

value of type "int" and updates the content of variable "ap" to point to the next argument from

the list. Values of consecutive anonymous arguments can be loaded by successive calls of

va_arg() with a corresponding type in turn.

Note that an anonymous argument with type "char" and "short" will be promoted to one with

type "int" when it is passed from a caller function to callee function. So is an anonymous

argument with type "float" promoted to one with type "double". Thus, when loading values of

anonymous arguments, use type "int" or "double" for va_arg() rather than type "char",

"short", or "float".

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 299

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

19.10. Inline Assembly Programming

19.10.1. General

Inline assembly programming is a way GCC provides to write assembly code embedded in C

program. The following displays the basic form of inline assembly programming:

__asm__ ("an assembly code template"

 : a list of output operands

 : a list of input operands

 : a list of clobber registers);

As shown above, an inline assembly statement starts with "__asm__ (...)" or "asm (...)" and

includes four parts separated by colons: a string of an assembly code template, a list of output

operands, a list of input operands, and a list of clobber registers. The first part, an assembly code

template, contains the set of assembly instructions and is essential to inline assembly statement.

The rest three parts are used to fulfill the instructions and can be optional. The following gives

an example of an inline assembly statement that only has a string of assembly code starting with

a comment symbol as its output string.

__asm__ ("! A test of inline assembly code");

Since GCC can’t recognized the output string of an inline assembly statement, it simply outputs

that string enclosed in "#APP" and "#NO_APP" in generated assembly code. Then, the whole

assembly code can be validated and assembled by assembler.

An assembly instruction normally has an output operand and two input operands. An operand in

an assembly instruction is presented by a symbol "%" followed by a number starting from 0. In

Example-Asm-1, "%0", "%1", and "%2" represent three operands and GCC will replace them from

the output operand list to the input operand list when the output string of the assembly code

template is generated.

/* Example-Asm-1 */

int func_asm_1 (int i, int j)

{

 int ret;

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 300

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

 __asm__ ("add\t%0, %1, %2\n\t"

 "movi\t$r6, 123\n\t"

 "add\t%0, %0, $r6"

 : "=r" (ret)

 : "r" (i), "r" (j)

 : "$r6");

 return ret;

}

From the above example, we can see that "\n\t" is used to separate an instruction from others

and "\t" to separate an instruction from its first operand in an assembly code template.

Each operand in the input/output operand list is specified by a constraint in double quotes and a

C expression in parentheses. In Example-Asm-1, "=r" (ret), "r" (i) and "r" (j) are the cases.

A constraint of an operand is used to indicate the addressing mode. Constraint "r" means

operands should be placed in general registers and constraint modifier "=" is used for output

operands, indicating the operands are write-only.

19.10.2. Symbolic Operand Name

Another way to specify an operand is to use a symbolic operand name in the form of “[name]” as

shown in Example-Asm-2. It’s quite flexible to give a symbolic operand names in that it has no

relation to any symbol table. Any name is valid no matter it is in C symbol or not, but be sure

that no two operands shares the same symbolic name in an asm statement.

/* Example-Asm-2 */

int func_asm_2 (int i, int j)

{

 int ret;

 __asm__ ("add\t%[output], %[input_1], %[input_2]"

: [output] "=r" (ret)

: [input_1] "r" (i), [input_2] "r" (j));

 return ret;

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 301

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

19.10.3. Clobber List

In a clobber list, registers or memory are listed to inform GCC that these items have been

modified. Registers used in an assembly code template have to be specified in the clobber list so

that GCC will assume the content of the registers are invalid after the inline assembly statement

and generate extra instructions to maintain correct register status. In addition to registers,

"memory" can also be listed in a clobber list to make GCC update memory values.

/* Example-Asm-3 */

int func_asm_3 (int i, int j)

{

 int ret;

 __asm__ ("add\t%0, %1, %2\n\t"

 "movi\t$r6, 12345\n\t"

 "add\t%0, %0, $r6"

 : "=r" (ret)

 : "r" (i), "r" (j)

 : "$r6");

 return ret;

}

With the compiler option “-O1”, Example-Asm-3 will be compiled as:

func_asm_3:

 ! begin of prologue

 push.s $r6, $r6, { }

 addi10.sp -4

 ! end of prologue

#APP

 add $r0, $r0, $r1

 movi $r6, 12345

 add $r0, $r0, $r6

#NO_APP

 ! begin of epilogue

 addi10.sp 4

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 302

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

 pop.s $r6, $r6, { }

 ret5

 ! end of epilogue

In Example-Asm-3, GCC is informed that "$r6" will be clobbered by the inline assembly

statement, so it generates instructions to push/pop callee-saved register "$r6" in

prologue/epilogue in order to satisfy ABI.

19.10.4. Read-write Operand

Each operand in the input and output operand list can be referenced by numbers from “0” to

“n-1” in increasing order, where n stands for the total number of operands. Thus, a constraint

with a number can be used to denote certain operand and furthermore manipulate read-write

operands. An operand that has the constraint “0” will be placed in the same location as operand

0, thus specifying a read-write operand. The rest read-write operands can be manipulated

likewise. In Example-Asm-4, "1" is used to allow the input operand [read_2] to have the same

register as the second output operand [write_2].

/* Example-Asm-4 */

int func_asm_4 (int i, int j)

{

 int ret;

 __asm__ ("add\t%[write_1], %[read_1], %[read_2]\n\t"

 "movi\t$r6, 12345\n\t"

 "add\t%[write_2], %[read_1], $r6"

 : [write_1] "=r" (ret), [write_2] "=r" (j)

 : [read_1] "r" (i), [read_2] "1" (j)

 : "$r6");

 return ret + j;

}

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 303

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

19.10.5. Constraint Modifier "&"

GCC may assume that input operands are read before output operands are written and then

allocate output operands in the same registers as unrelated input operands. However, such an

assumption doesn’t apply when there is more than one instruction in the assembler code

template. Example-Asm-5 demonstrates this problem.

/* Example-Asm-5 */

int func_asm_5 (int i, int j)

{

 int ret1, ret2;

 __asm__ ("movi\t%[write_1], 12345\n\t"

 "add\t%[write_2], %[read_1], %[read_2]"

 : [write_1] "=r" (ret1), [write_2] "=r" (ret2)

 : [read_1] "r" (i), [read_2] "r" (j));

 return ret1 + ret2;

}

Compile Example-Asm-5 using the option “-O1”:

func_asm_5:

#APP

 movi $r1, 12345

 add $r0, $r0, $r1

#NO_APP

 add45 $r0, $r1

 ret5

We can observe that the operand [read_2] uses the same register "$r1" as the operand

[write_1]. Since the first instruction clobbers the operand [read_2] when writing [write_1],

the second assembly instruction gets wrong content of [read_2]. To avoid this problem, apply

constraint modifier "&" to an output operand to inform GCC not to allocate the input and output

operands in the same registers. As shown in Example-Asm-6, constraint modifier "&" is used to

ensure all output operands reside in different registers from input operands.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 304

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

/* Example-Asm-6 */

int func_asm_6 (int i, int j)

{

 int ret1, ret2;

 __asm__ ("movi\t%[write_1], 12345\n\t"

 "add\t%[write_2], %[read_1], %[read_2]"

 : [write_1] "=&r" (ret1), [write_2] "=&r" (ret2)

 : [read_1] "r" (i), [read_2] "r" (j));

 return ret1 + ret2;

}

The assembly code of Example-Asm-6 shows no problem of overlapping registers:

func_asm_6:

#APP

 movi $r2, 12345

 add $r3, $r0, $r1

#NO_APP

 mov55 $r0, $r3

 add45 $r0, $r2

 ret5

19.10.6. Volatile

GCC may move or delete assembly statements in view of optimization strategy. For example, an

inline assembly statement to access hardware status without dependency on any instruction will

likely be removed by GCC optimization. To avoid these unwanted optimization effects, use

keyword "__volatile__" or "volatile" after asm statement to switch off optimization and

preserve the inline assembly code.

__asm__ __volatile__ ("setend.b");

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 305

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

19.10.7. Andes-specific Constraints

In the design of AndeStar ISA, the general registers are classified into three levels for 16/32-bit

instructions code generation and some instructions implicitly use particular registers. Therefore,

we provide following Andes-specific constraints in addition to the general constraint "r" for

inline assembly programming.

 l: Low register class $r0 ~ $r7

 d: Middle register class $r0 ~ $r11, $r16 ~ $r19

 h: High register class $r12 ~ $r14, $r20 ~ $r31

 t: Temporary assist register $ta (i.e. $r15)

 v: Register $r5

Example-Asm-7 below demonstrates the result of these special constraints, in which we

hold the value of variables i and j with high register class and assign the result to the

register $r5:

/* Example-Asm-7 */

int func_asm_7 (int i, int j)

{

 int ret;

 __asm__ ("add\t%0, %1, %2\n\t"

 : "=v" (ret)

 : "h" (i), "h" (j));

 return ret;

}

The assembly code generated with the option “-O1” is shown below:
func_asm_7:

 movd44 $r20, $r0 ! $r20  $r0; $r21  $r1

#APP

 add $r5, $r20, $r21

#NO_APP

 add45 $r0, $r5

 ret5

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 306

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Appendix

Programming Tips

Move libc.a to the beginning of text section

The static libraries are normally at the end of text section. During the process of symbol

resolution using static libraries, linker scans the object files and archives from left to right

as input on the command line. If the input is an archive, linker scans through the list of

member modules that constitute the archive to match any unresolved symbols. That

explains why static libraries are placed at the end of the linker commands.

There are several methods to move libc.a to the beginning of text section. The following

is an example achieved via modification of the linker script:

.text :

{ /* output section rule */

/* exclude file input section rule */

 (EXCLUDE_FILE(<your application object folder>/).text

/* default input section rule */

*(.text)

}

The above modified linker script forces the object files under your application object folder

to be excluded in the beginning of text section, thereby enabling linker to place libc.a in

the beginning of text section.

Andes Programming Guide for ISA V3

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 307

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Display register information and debug on reset by GDB commands

Andes provides GDB commands to display register information and to debug on reset.

Andes-defined GDB commands to show the content of registers are –

info registers lists all general purpose registers (GPR) and their contents for

selected stack frame (NDS32 specific command).

info registers cr lists all configuration system registers (CR) and their contents

(NDS32 specific command).

info registers dmar lists all local memory DMA registers (DMAR) and their contents

(NDS32 specific command).

info registers dr lists all EDM system registers (DR) and their contents (NDS32

specific command).

info registers idr lists all implementation-dependent registers (IDR) and their

contents (NDS32 specific command).

info registers ir lists all interruption system registers (IR) and their contents

(NDS32 specific command).

info registers mr lists all MMU system registers (MR) and their contents (NDS32

specific command).

info registers pfr lists all performance monitoring registers (PFR) and their

contents (NDS32 specific command).

info registers racr lists all resource access control registers (RACR) and their

contents (NDS32 specific command).

info registers all lists all registers and their contents (NDS32 specific command).

Andes also provide the following system-related GDB command to debug on reset.

reset-and-hold To reset the target system and set PC to 0x0.

This command makes the debugger hold a CPU right after the reset of the debugging target

and is especially useful for boot code development.

	Revision History
	Table of Contents
	List of Tables
	List of Figures
	1. Overview
	1.1. What’s New Since BSP v4.0

	2. Getting Started
	2.1. Andes Instruction Set Architecture and Instructions
	2.2. Command Line Options
	2.2.1. Compiler Options
	2.2.2. Assembler Options
	2.2.3. Linker Options

	3. NDS32 Assembly Language
	3.1. General Syntax
	3.2. Registers
	3.2.1. General Purpose Registers (GPR)
	3.2.2. Accumulators d0 and d1
	3.2.3. Instruction Implied Registers
	3.2.4. Assembler Reserved Register $ta
	3.2.5. Operating System Reserved Registers $p0 and $p1

	3.3. Missing Operand
	3.3.1. Load/Store Instructions
	3.3.2. Branch Instructions
	3.3.3. Special Instructions

	4. Machine Instructions
	4.1. 32/16-bit
	4.2. Unaligned Data Handling
	4.3. Endianness

	5. Pseudo-ops
	5.1. List of Pseudo-ops
	5.1.1. GNU Default Pseudo-ops Supporting Sections
	5.1.2. Andes Pseudo-ops Supporting Sections
	5.1.3. GNU Default Pseudo-ops Supporting ELF
	5.1.4. Andes Pseudo-ops Supporting ELF
	5.1.5. Data Declaration Pseudo-ops
	5.1.6. Space Declaration Pseudo-ops

	6. Pseudo-instructions
	6.1. List of Pseudo-instructions
	6.1.1. Deprecated Pseudo-instructions

	6.2. Built-in Function Operators

	7. Macros
	7.1. Create Macros in Assembly Code
	7.2. Assembler Directives for Macros

	8. Application Binary Interface (ABI)
	8.1. Data Types
	8.1.1. Byte Ordering
	8.1.2. Primitive Data Types
	8.1.3. Composite Data Types
	8.1.3.1 Array Type
	8.1.3.2 Aggregate and Union Type
	8.1.3.3 Bit-field Type

	8.1.4. C Language Mapping of Andes Platform

	8.2. Calling Convention
	8.2.1. ABI2 (for v3, v3j and v3m Toolchains)
	8.2.1.1 Registers
	8.2.1.2 Stack Frame
	8.2.1.3 Argument Passing and Return
	8.2.1.4 Samples of ABI2

	8.2.2. ABI2FP+ (for v3s and v3f Toolchains)
	8.2.2.1 Registers
	8.2.2.2 Stack Frame
	8.2.2.3 Argument Passing and Return

	9. Andes Specifics
	9.1. Get PC
	9.2. Andes Predefined Macros
	9.2.1. Deprecated Predefined Macros

	9.3. Crt0.S

	10. Andes C Language Extension for Interrupt Service Routine (Not Supported on S801)
	10.1. Syntax for System Reset Handler
	10.1.1. Example

	10.2. Syntax for Interrupt Handlers
	10.2.1. Example

	10.3. Syntax for Exception Handlers
	10.3.1. Example
	10.3.1.1 Example of Skipping the Instruction that Causes the Exception

	10.4. Linker Options
	10.4.1. Linker Script

	11. ROM Patching
	11.1. Indirect Call Functions
	11.1.1. Implementation of Indirect Call Functions
	11.1.1.1 Apply Indirect Call Attribute to Function Declaration in Your Program or Header File
	11.1.1.2 Add .nds32.ict Section to Linker Script

	11.1.2. Limitations
	11.1.3. Tutorial

	11.2. Function Table Mechanism
	11.2.1. Implementation of Function Table Mechanism
	11.2.1.1 Add Function Table for Patchable Functions to Your Program
	11.2.1.2 Change Every Call-site for Patch-able Functions in Your Program
	11.2.1.3 Add Function Table Section to Linker Script

	11.2.2. Limitations
	11.2.3. Tutorial

	12. Andes Intrinsic Function Programming
	12.1. Summary of Andes Intrinsic Functions
	12.2. Detailed Intrinsic Function Description
	12.2.1. Intrinsics for Load/Store
	__nds32__llw
	__nds32__lbup
	__nds32__lwup
	__nds32__sbup
	__nds32__scw
	__nds32__swup

	12.2.2. Intrinsics for Read/Write System and USR Registers
	__nds32__mfsr
	__nds32__mfusr
	__nds32__mtsr
	__nds32__mtsr_isb
	__nds32__mtsr_dsb
	__nds32__mtusr

	12.2.3. Miscellaneous Intrinsics
	__nds32__break
	__nds32__cctlva_lck
	__nds32__cctlidx_wbinval
	__nds32__cctlva_wbinval_alvl
	__nds32__cctlva_wbinval_one_lvl
	__nds32__cctlidx_read
	__nds32__cctlidx_write
	__nds32__cctl_l1d_invalall
	__nds32__cctl_l1d_wball_alvl
	__nds32__cctl_l1d_wball_one_lvl
	__nds32__dpref_qw
	__nds32__dpref_hw
	__nds32__dpref_w
	__nds32__dpref_dw
	__nds32__dsb
	__nds32__get_current_sp
	__nds32__get_unaligned_dw
	__nds32__get_unaligned_w
	__nds32__get_unaligned_hw
	__nds32__isb
	__nds32__isync
	__nds32__jr_itoff
	__nds32__jr_toff
	__nds32__jral_iton
	__nds32__jral_ton
	__nds32__msync*
	__nds32__nop
	__nds32__put_unaligned_dw
	__nds32__put_unaligned_w
	__nds32__put_unaligned_hw
	__nds32__rotr
	__nds32__schedule_barrier
	__nds32__setend_big
	__nds32__setend_little
	__nds32__return_address
	__nds32__ret_itoff
	__nds32__ret_toff
	__nds32__set_current_sp
	__nds32__standby_no_wake_grant
	__nds32__standby_wake_grant
	__nds32__standby_wait_done
	__nds32__sva
	__nds32__svs
	__nds32__syscall
	__nds32__teqz
	__nds32__tnez
	__nds32__trap
	__nds32__wsbh

	12.2.4. Intrinsics for PE1 Instruction
	__nds32__abs
	__nds32__ave
	__nds32__bclr
	__nds32__bset
	__nds32__btgl
	__nds32__btst
	__nds32__clip
	__nds32__clips
	__nds32__clo
	__nds32__clz

	12.2.5. Intrinsics for PE2 Instructions
	__nds32__bse
	__nds32__bsp
	__nds32__pbsad
	__nds32__pbsada

	12.2.6. Intrinsics for String
	__nds32__ffb
	__nds32__ffmism
	__nds32__flmism

	12.2.7. Intrinsics for FPU
	__nds32__fcpynsd
	__nds32__fcpynss
	__nds32__fcpysd
	__nds32__fcpyss
	__nds32__fmfcfg
	__nds32__fmfcsr
	__nds32__fmtcsr

	12.2.8. Intrinsics for TLBOP
	__nds32__tlbop_trd (TLB Target Read)
	__nds32__tlbop_twr (TLB Target Write)
	__nds32__tlbop_rwr (TLB Random Write)
	__nds32__tlbop_rwlk (TLB Random Write and Lock)
	__nds32__tlbop_unlk (TLB Unlock)
	__nds32__tlbop_pb (TLB Probe)
	__nds32__tlbop_inv (TLB Invalidate VA)
	__nds32__tlbop_flua (TLB Invalidate All)

	12.2.9. Intrinsics for Saturation ISA
	__nds32__kaddw
	__nds32__ksubw
	__nds32__kaddh
	__nds32__ksubh
	__nds32__kdmbb
	__nds32__kdmbt
	__nds32__kdmtb
	__nds32__kdmtt
	__nds32__khmbb
	__nds32__khmbt
	__nds32__khmtb
	__nds32__khmtt
	__nds32__kslraw
	__nds32__rdov
	__nds32__clrov

	12.2.10. Intrinsics for Interrupt
	__nds32__setgie_dis
	__nds32__setgie_en
	__nds32__gie_dis
	__nds32__gie_en
	__nds32__enable_int
	__nds32__disable_int
	__nds32__set_pending_swint
	__nds32__clr_pending_swint
	__nds32__clr_pending_hwint
	__nds32__get_pending_int
	__nds32__get_all_pending_int
	__nds32__set_int_priority
	__nds32__get_int_priority
	__nds32__get_trig_type

	12.2.11. Intrinsics for COP ISA Extension
	__nds32__cpe1
	__nds32__cpe2
	__nds32__cpe3
	__nds32__cpe4
	__nds32__cpld
	__nds32__cpld_bi
	__nds32__cpldi
	__nds32__cpldi_bi
	__nds32__cplw
	__nds32__cplw_bi
	__nds32__cplwi
	__nds32__cplwi_bi
	__nds32__cpsd
	__nds32__cpsd_bi
	__nds32__cpsdi
	__nds32__cpsdi_bi
	__nds32__cpsw
	__nds32__cpsw_bi
	__nds32__cpswi
	__nds32__cpswi_bi
	__nds32__mfcpd
	__nds32__mfcpw
	__nds32__mfcppw
	__nds32__mtcpd
	__nds32__mtcpw
	__nds32__mtcppw

	13. User/Kernel Space
	13.1. Privilege Resources
	13.1.1. Configuration System Registers
	13.1.2. Interruption System Registers
	13.1.3. MMU System Registers
	13.1.4. ICE System Registers
	13.1.5. Performance Monitoring Registers
	13.1.6. Local Memory DMA Registers
	13.1.7. Implementation-Dependent Registers

	13.2. Privilege Resource Access Instructions
	13.2.1. Read from/Write to System Registers
	13.2.2. Jump Register with System Register Update
	13.2.3. MMU Instructions

	13.3. Privileged Instructions
	13.3.1. IRET: Interruption Return
	13.3.2. SETGIE.E/SETGIU.D: Set Global Interruption Enable
	13.3.3. CCTL: Cache Control
	13.3.4. STANDBY: Wait for External Event

	13.4. Instructions for User-space Program to Access System Resources
	13.4.1. DPREF/DPREFI: Data Prefetch
	13.4.2. SETEND.B/SETEND.L: Set Data Endian
	13.4.3. CCTL: Cache Control
	13.4.4. ISB/DSB: Data/Instruction Serialization Barrier
	13.4.5. STANDBY: Wait for External Event

	13.5. Serializations Related to CPU Control Register Accesses

	14. Linking/Loading
	14.1. Static Linking
	14.2. Dynamic Linking
	14.3. Guidelines to Decide Linking Mode

	15. Linker Script Generation
	15.1. Script Format SaG and Its Syntax
	15.1.1. BNF Notation for SaG Syntax
	15.1.2. Formal Syntax of SaG Format
	15.1.2.1 Overview
	15.1.2.2 Load Region Description
	15.1.2.3 Execution Region Description
	15.1.2.4 Input Section Description
	15.1.2.5 Execution Overlay Region Description
	15.1.2.6 Overlay Input Section Description
	15.1.2.7 Examples

	15.2. Linker Script Generator (LdSaG)

	16. Object Files
	16.1. ELF file
	16.2. Examine ELF file

	17. Andes MCUlib
	17.1. Features of MCUlib
	17.2. MCUlib printf Implementation
	17.3. Building Libgloss

	18. Virtual Hosting
	19. Advanced Programming Optimization
	19.1. Optimization Options
	19.1.1. Options for Code Size Optimization
	19.1.2. Options for Code Speed Optimization
	19.1.3. Options to Remove Unused Sections
	19.1.4. Options to Use EX9 Optimization
	19.1.5. Options to Use IFC Optimization
	19.1.6. Notice on Some Optimization Options
	19.1.7. Optimization Levels and Default Applied Options

	19.2. EX9 Optimization
	19.2.1. Export and Import
	19.2.2. EX9 Table Shared by Multiple Separately-linked Program Modules

	19.3. IFC (Inline Function Call) Optimization
	19.4. Zero Overhead Loop Optimization
	19.4.1. Zero Overhead Loop Optimization Limitations
	19.4.2. Disable ZOL Optimization for Specific Functions or Loops

	19.5. Instruction Max/Min of Performance Extension
	19.6. Primitive Data Type "int"
	19.7. Addressing Space for Programs
	19.7.1. Small Data Area and Relaxation
	19.7.2. Code Models

	19.8. Link Time Optimization in GCC
	19.8.1. Using LTO
	19.8.2. Notice When Applying LTO

	19.9. Function with Variable Number of Arguments
	19.10. Inline Assembly Programming
	19.10.1. General
	19.10.2. Symbolic Operand Name
	19.10.3. Clobber List
	19.10.4. Read-write Operand
	19.10.5. Constraint Modifier "&"
	19.10.6. Volatile
	19.10.7. Andes-specific Constraints

	Appendix
	Programming Tips
	Move libc.a to the beginning of text section
	Display register information and debug on reset by GDB commands

