Document PGO010-16

Number

Date Issued 2017-08-11

Copyright © 2014-2017 Andes Technology Corporation. AA
All rights reserved. N D E s

TECHNOLOGY

Copyright Notice

Copyright © 2014—2017 Andes Technology Corporation. All rights reserved.
AndesCore™, AndeShape™, AndeSight™, AndESLive™, AndeSoft™, AndeStar™, and Andes

Custom Extension™ are trademarks owned by Andes Technology Corporation. All other

trademarks used herein-ake-thesproperty of their respective owners.

This document co t@fﬁl@c}@il information pertaining to Andes Technology Corporation.
Use of this copyrig hFQoetiTe IS pr Céti bnary and does not imply publication or disclosure.

Neither the whole'qor art%

e Infopmation contained herein may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into any language in any form by any
means without the written permission of Andes Technology Corporation.

The product described herein is subject to continuous development and improvement. Thus, all
information herein is provided by Andes in good faith but without warranties.

This document is intended only to assist the reader in the use of the product. Andes Technology
Corporation shall not be liable for any loss or damage arising from the use of any information in

this document, or any incorrect use of the product.

Contact Information

Should you have any problems with the information contained herein, you may contact Andes
Technology Corporation through:
e-mail — support@andestech.com

Website — https://es.andestech.com/eservice/

Please include the following information in your inquiries:
B the document title

B the document number

B the page number(s) to which your comments apply

B aconcise explanation of the problem

General suggestions for improvements are welcome.

https://es.andestech.com/eservice/

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY

Revision History

Rev. Revision Date Revised Content

L1..Added.N15 and D15 as supported Andes cores (Table 2, Section 2.2.1

and 12.2)

. Added intrinsic functions for coprocessor ISA extension (Table 20

1.6 2017/08/711 anehSection 12.2.11)
~Added-=NGLOAD” to input_section_description of the SaG script
format for marking an section not to be loaded at runtime (Section
15.1.2.4)
Changed the document template to V11
. Added descriptions for ISA V3m+ (Table 1, Section 4.2 and Section
12.2)
. Added a compiler option “-munalign-access” and updated the
possible values for “-march="and “-mcpu=" (Section 2.2.1 and 2.2.2)
. Added two predefined macros “NDS32_EXT_DSP” and
“NDS32_EXT_ZOL” (Section 9.2)
. Removed the limitation on ROM and flash address space from the
1.5 | 2017/03/28 implementation of ROM patching using indirect call functions and
added a compilation flag "-mict-model=[small|large]" for the
implementation. (Section 11, 11.1.2, 11.1.3)
. Added N650, N820, E830, D10 to descriptions of Andes intrinsic
functions and removed those for N12 (Section 12.2)
. Corrected the example of __nds32__ tlbop_trd (Section 12.2.8)
8. Added the nds_Idsag template for the Windows environment and
updated the default file name of the linker script generated by
nds_Idsag (Section 15.2)
. Added D1088 as a core supporting FPU, coprocessor, and saturation
ISA extension. (Table 2)
. Introduced two ROM patching approaches: indirect call functions and
function table mechanism (Ch. 1, 11)
. Gave example lists of AndesCores supporting V3 and V3m ISA.
1.4 2016/4/21 (Section 12.2)

. Corrected the descriptions in “Supported CPUs” for all intrinsic

functions. (Section 12.2.1,12.2.2,12.2.3,12.2.4,12.2.5, 12.2.6)

. Extended intrinsic functions to support up to 32 interrupts. (Section

12.2.10)

. Extended intrinsic functions to access the following system registers:

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Page ii

Andes_Programming_Guide_for_ISA_V3_PG0O10_V1.6

Andes Programming Guide for ISA V3 éaﬂQ_OEGsv

Rev. Revision Date Revised Content

INT_MASK2, INT_PEND2, and INT_PRI2. (Section 12.2.10)

7. Clarified the usage and description of ___nds32___set_pending_swint
and—nds32 clr_pending_swint. (Section 12.2.10)

8. Addedran intrinsic function “___nds32__ clr_pending__hwint” to clear
the pending status for edge-triggered HW interrupts. (Section
12 :2,10)

9—Separated-the descriptions of nds32_ get pending_int from those
of __nds32__ get all _pending_int since the latter intrinsic is
deprecated. (Section 12.2.10)

10. Added an intrinsic function “___nds32__ get_trig_type” to access
Interrupt Trigger Type Register and updated Table 19. (Section
12.2.10)

11. Added descriptions for memory allocation functions (Ch. 18)

12. Removed “-fno-delete-null-pointer-checks” from the default applied
option at -00, -Og and -O1 (Table 27)

1. Removed the note about the Virtual Hosting limitation when syscall is
used in ISR and advised users not to redirect outputs when Virtual
Hosting is enabled. (Chapter 18)

2. Noted that _malloc_r() and _free_r() may be called automatically

1.3 2016/2/19 when Virtual Hosting is enabled (Chapter 18)

3. Removed the note about the Virtual Hosting limitation when syscall is
used in ISR and advised users not to redirect outputs when Virtual
Hosting is enabled. (Chapter 18)

4. Added “INCLUDE?” for including other linker scripts to the SaG
header syntax (Section 15.1.2.1)

5. Added two optimization options “-malign-functions” and
“-malways-align” (Section 19.1.2 and 19.1.6, Table 27)

6. Added DSP extension and ZOL to Table 1 and Table 2

. Modified the description of the input “critical” in C language ISR
1.2 | 2015/07/28 (Section 10.2 and 10.3)

8. Updated supported compiler options (Section 2.2.1)

9. Added “-m[no-]dsp-ext” and “-m[no-]zol-ext” to supported assembler
options (Section 2.2.2)

10. Added -fno-delete-null-pointer-checks to Table 27

11. Noted the applied option differences between BSP v3.2 and BSP v4.0
(Section 19.1.7)

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PG0O10_V1.6

Page iii

Andes Programming Guide for ISA V3 éaﬂQ_OEGsv

Rev. Revision Date Revised Content

12. Added detailed descriptions about the ZOL optimization (Section
19.4)

13.-Neted-the.usage of “-mcmodel”, “-mvh”, or “-mext-zol” during
compilation and linking. (Section 2.2.1)

Changed “ldsag” to “LdSaG” and “SAG” to “SaG” (Chapter 15)
2." Added syntax checking to “What’s New” section (Section 1.1)

3. Added EXCLUDE_FILE to input section descriptions of SaG syntax
(Section 15.1.2.4)

1.1 2015/04/10

1. Added two intrinsic functions ___nds32___mtsr_isb() and
___nds32___mtsr_dsb() (Section 12.1 and 12.2.2)

2. Added deprecated instructions in typographical convention index

3. In MCUIib, changed the modifier “N” to “II” and added “F” as a
conversion supportive character. Besides, changed the supportive
character for the precision field as “(.precision)”. (Section 17.2)

4. Added a note about the linking problem when applying -flto to a
program where printf() will be redirected from libc.a by
nds32_write() (Section 19.8.2)

5. Moved the description of adding -fno-omit-frame-pointer to show $fp
in stack frame before the explanations about prologue and epilogue
(Section 8.2.1.2)

6. Re-organized the descriptions about passing the result in memory
(Section 8.2.1.3)

1.0 2015/01/26 |7. Added that -finline-functions is an enabled option at -O3 by default
and may cause the increase of code size (Section 19.1.2 and 19.1.6)

8. Added a performance optimization option “-ftree-switch-shortcut”
(Section 19.1.2)

9. Added nds_write() redirected from libc.a as an example to use
___attribute__ ((used)) (Section 19.8.2)

10. Added a note to use correct signedness for arguments and return
values when calling intrinsic functions (Ch. 11)

11. Added notes to explain what “nds32_nmih”, “.nds32_wrh” and
“.nds32_jmptbl” sections are for to C-ISR implementation. (Section
10.1,10.2,10.3)

12. Added explanations for optimization options
“-fno-delete-null-pointer-checks” and “-fno-strict-aliasing” and
“-fwrapv” (Section 0)

13. Added a summary about optimization levels (Section 19.1.6) and

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PG0O10_V1.6

Page iv

- .
Andes Programming_; Guide for ISA V3 ANDES

TECHMNOLOGY

Rev.

Revision Date Revised Content

added —Og to Table 27
14. Added Saturation Arithmetic ISA Extension to Table 2

0.5 | 2014709/19(

Doeument greation. For major features in BSP v4.0 and differences from
earliér.versions, please refer to Section 1.1 What’s New.

|
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,

reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.
Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Page v

Andes Programming_; Guide for ISA V3 éuﬂQ_OEGsv

Table of Contents

COPYRIGHT NOTICE.......ccot it ittitiitetiteteesis ettt e et s esse et sesesessese e atesessases e st etese e e serensabeEeneasere e abetenseseneseetesenensenenennes |
CONTACT INFORMATIONcotiietieteesiset sttt te e tete s se e e stesesssseseseeteseseeseseseebeEeneasere e asesessasesenessesenenserenenses |
REVISION HISTORY £ 4] =P e e ————— 1
LIST OF TABLES ..., o P PRCEGIrel B R R RS BRI Xl
LIST OF FIGURES....‘. ... X1
I O A 4 Y o Y TSRS 1
1.1. WHAT'S NEW SINCE BSP VZ.0 ...ttt b btttk e b e b e b e e ket a e e e be e ebe e bt enbeenbesbeenbeenbes 2
2. GETTING STARTED ...ttt ettt s et s et s e R s e s e e s et et b e s e e R et et e b e e b es e e e e te e ntene e nnes 3
2.1. ANDES INSTRUCTION SET ARCHITECTURE AND INSTRUCTIONS ..vvviteriieteresisteeseesesestsssesensesesessesssssesessssessssnsenenens 3
2.2. COMMAND LINE OPTIONS.cuttettteiateseeeteresestesesessesesessesessssesessssesessssesessssessssesesessasesessasesessssesessesesessssesessasesessssesessnss 5
2 S o o 0] 011 1= @] o) T} 1SS 5
A B X3 1- 0 Yo T @ T o) 1 o] o S 8
A T I 1] (=T g @ o) o] o 1SRN 1

3. NDS32 ASSEMBLY LANGUAGE........ccoccititeteit ettt ettt st b st ettt b e s e st te st et e s e st te s bens 16
3.1. GENERAL SYNTAX 1.vututtetestteteessesesesseseessssesessesesessssesessasesessesesessasesessesesessasesessesesessesesessasesessasesessssesessssesessssesessssases 16
3.2. REGISTERS ...teuttetetestetestseetesestete e seetesestese e seetesessese e seetese s e se e neeEe st e se s et ee e b e s e e s e R e e s e b ene e e e R e e s e e b e e e e e s e e e s eb e e s e ene e nsnnenensens 17
3.2.1. General PUrpose REGISTEIS (GPR).......iiiiiiiieice sttt e st st estesnaene e e e e seeseesteaneeneanes 17
3.2.2. AcCUMUIALONS O AN OL......cuiiiicieiece bbbttt bbb bbb sttt r st b ne st 17
3.2.3. INStruction IMPHEd REGISIEIS.c..i ittt sr e st neen e e e et e seestenteareeneanes 17
3.2.4. Assembler ReSErVEd REGISTEN BLAccoiiiiiiiiice e ettt 18
3.2.5. Operating System Reserved Registers $p0 and BPLcovciiiiiiiiicieicice e 18

3.3. IMIISSING OPERANDcuvttuiseeteseeeseesessesessesesessssesessasesessesesessasesessssessssesesessesessssesesessesessssesesessasessssesessssesensasasesessesenens 19
3.3.1. LOAA/SONE INSEIUCLIONS ...ttt ettt bbbttt b st st r bt ene st 19
3.3.2. BranCh INSTIUCLIONSc.oiiiiiiiieicie e bbb bbbt et sb et bbb e st b ne et 20

G R TR TR 1= o3 = | I 1 1o) (o T R 20

4. MACHINE INSTRUCTIONSooiiit ittt sttt b e e bt r e s b et e e bbb e st et e s et et ese st et e et ebene st et e se s ns 22
4.1. I = OO SOV 22
4.2. UNALIGNED DATA HANDLING ... ettt e st ie e e ssssesessesesessesesessasesessesessssesesessesensssesessnsesensssesessssesenssseses 22
4.3. EENDIANNESS ... vevettstteseseetesesteteeseetesestese e seetesessese e seeseseseese e seeEesesees et eeeEeseeseEe e e e e b e n e e e e R et e e e R e e e e e s e e e e eE e e e sene e neeneneesens 23

B, PSEUDO-OPS ...ttt 1 et s b4t b R b bt E oA LA R e b bR et et e A b bR et et e R et et te bt R e et tenrerers 24
5.1. LIST OF PSEUDO=0PS......cututtetereteteeseesesestasesesessesessesesessssesessasesessssessssasesessesessssesesessesessssesesessesessssesessssesensasesesessesenens 24

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PG0O10_V1.6

Andes Programrm'ng Guide for ISA V3

ANDES

TECHMNOLOGY

Andes_Programming_Guide_for_ISA_V3_PG0O10_V1.6

5.1.1. GNU Default Pseudo-0ps SUPPOItING SECTIONS.......ccoiiiiiiiieieie ettt s 24

5.1.2. Andes Pseudo-0ps SUPPOFTING SECTIONSciiiiiiiiiie ittt bbb bbb ens 24

5.1.3. GNU Default Pseudo-0ps SUPPOItING ELF ..o 25

5.1.4. Andes Pseudo-0ps SUPPOFTING ELF ..ottt bbb bbb 30

BT D=1 £= W B1=Tol T = U8 (0] 0 I oS{ =16 (0 [0 0] o USSP 30

5.1.6. Space Declaration PSEUDD=DPDSo ittt sttt et bbbt r et sb bbb senr s 31

6. PSEUDO-INSTRUCTTOMNS . 5. s et eetveeiveestteesseestteesseessteesseessssessesssseesssesssssessssessssessssessssesssessssassesssesesssessees 32

6.1. (I S) O]l oS =W 516 B NS5 206 (G2 (6] N K pravrenet 0NN UR PRSP PPPROPUPTROPPR 32

6.1.1. Deprecated PSEUAO-INSTIUCTIONSc.iiiiiiieiiie ittt bbbttt sbe bbbt st e e enee e 37

6.2. BUILT-IN FUNCTION OPERATORScccitttieiitttteeiteeeeaitteeeeatteesesbeeaeaatteeeaassseeessbaeaesabteeeaassseesasssaesasbaeeaasteseesssseesasrenns 38

N | 1 AN @4 = 1 TSRS 39

7.1. CREATE MACROS IN ASSEMBLY CODEciiiititieiitiie e i ittt e e etee e e e ettee e s atbeeeaateeeeseaeaeeasabeeaasbeeeeaasseeessabeeaestbeeesasseeessanes 39

7.2 ASSEMBLER DIRECTIVES FOR IMACROSuiiiiiitiiie i ititee e ettt e e ettt e e s ette e e e ette e e e sataeaeastbeeeaasseeeesabaseaastaeeesaseseessabeeeeasaeeeans 40

8. APPLICATION BINARY INTERFACE (ABI) .ottt st sttt nne e 41

8.1. DIATA TYPES. ...ttt et cttee ettt e ettt e e e ettt e e e ettt e e e sabaee e e bbeeeeastee e e sabeseeabbeeeaastseeeaabeaeessbeeeaasseeeesabeeeessbbeeeaasbeeeesnsanaestreens 41

S T = 4 (- @] o =]] T OO U SOU ST 41

S TN o 10 a1 AVl D= = W Y o 1= OSSO U TP 41

8.1.3. COMPOSITE DATA TYPS .. eetiiuiatiieiie ittt sttt etee e e e et st e s be bt be et asee st e st e e beabesbe s st es e e e e b e sbesbesbeebeebeaneenbesbesbenbesbeaneanes 42

8.1.4. CLanguage Mapping of ANdes PIatfOrmmcocooiiiiiiiii e e 43

8.2. (7 NN 1N Y 010 N1/ = N ol (o] I TSRO OTPR 44

8.2.1. ABI2 (for v3, v3j and v3m TOOIChAINS)ccuiiiiiiiie it e 44

8.2.2. ABI2FP+ (for v3s and v3f TOOICHAINS).......coiiiiiiiii e e 52

9. ANDES SPECIFICS ...ttt s e e st s e e st e e s te e e st b e e aRee e s tb e e sae e et b e e aae e e teeenaeeenteeebeeenteeenneeeeeas 55

9.1 (€= o = OSSP RRRURRSPRRRTPE 55

9.2. ANDES PREDEFINED IMACROSutiiiiittiie ittt e e sittee e s ettt e e s sttee e e saaaeeeaatteeeaasseseesabasaesbbeeeaasseseessbaeaeasteeeesassseeessseeaeasseneens 55

9.2.1. Deprecated PredefiNed MACKOS ..ottt sb e sb e b et b et e e b sb et beebeanes 59

9.3. (O3 8 1 O TSSO P O RRRURROPRRRUP 60
10. ANDES C LANGUAGE EXTENSION FOR INTERRUPT SERVICE ROUTINE (NOT SUPPORTED

L0]\ 510 1 USSR 62

10.1. SYNTAX FOR SYSTEM RESET HANDLERceiiitiiiiitiie e ittt e e ettt e ettt e e s ettt e e e etae e e stte e e e sabeeaaasteeeesateeessabaeaesnsbeeeaanseeessanes 63

10.1.1. =10 0] o[- TR RUSOTP USRS 67

10.2. SYNTAX FOR INTERRUPT HANDLERScciiiittiieiiititieiitteeesitteeeeetteeeesabeeeestteeeaasseeeassbeeeaaabeeeesassaeesssbeeeaasteeeesbeeeesasrenns 69

10.2.1. =10 0] o[- TR RUSOTP USRS 71

10.3. SYNTAX FOR EXCEPTION HANDLERS......ceiiiittiieiiititeeitteeesitteeeeetteeesstbeeaestteeeaasseeeaaabeeesastaeeesassaeesssbeeasasteeeesnseeeesarrenns 72

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P .

reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age vi

Andes Programming Guide for ISA V3

ANDES

TECHMNOLOGY

10.3.1. =10 0] o[- RSSO U UP U URURURRIN 75
10.4. LINKER OPTIONS. ...cutitttittattautaateesteesteasteaaeaseesseeaseeaseaseasseasseassesbeeabeeabeesbeoaeeShe e eRe e abeembeea b e eh b e eb e e nbe e beebeennesnnesbneabeennis 76
10.4.1. [T 1T S To]] o SO USROS 76
11, ROM PATCHING ...ttt bbbt bbbt bR bbbt A bbb e bbb e bt e bt e bt et e b e bt et b ene st 77
11.1. INDIRECT CALL FUNGTHONS. .5 et ettt e e bbb n e sr e b ene s 78
11.1.1. Implementation of INdirect Call FUNCLIONS ..ot 78
11.1.2. LiMIatioNS) & G o s et 79
11.1.3. LU L0] T rrrerrrrrerrerrerrerrerrrrrerrer e TSSOSO 80
11,2, FUNCTION TABLE IMECHANISMctiitiiittateaet sttt ateesttabeastesssesteesteesbeesbeassesseesseeaaeeabeambeambeesbesbeesbeenbeenbeanbesnnesbeesneenis 85
11.2.1. Implementation of Function Table MeChaniSM ... s 85
11.2.2. (70 011 = Lo 1TSS P TR PRTRPRPO 86
11.2.3. LIV L (o] = LTSRS 86
12. ANDES INTRINSIC FUNCTION PROGRAMMING.......cccctiiiiiiiictreee st 90
12.1. SUMMARY OF ANDES INTRINSIC FUNCTIONScoitiiitiiitiatiaiiastiesteesteeste et e sieesieesbeasbeesbessbesbeesbeesbaesbeanesnnesseesneennas 90
12.2. DETAILED INTRINSIC FUNCTION DESCRIPTIONciiutiiutiittattattattesteasteesteesteassesseassesseesseassesssesssesssessssssssssesssesssens 102
12.2.1. INEFINSICS FOr LOBA/STONE. ...ttt b bbbt bt e e eb et sbesbesneeneas 103
12.2.2. Intrinsics for Read/Write System and USR ReGISTErS........cooiiiiiiiiiiiiieee et 110
12.2.3. MISCEHANEOUS INTFINSICS ...ttt bbbttt bbbt bt et e e e e et sbe e 117
12.2.4. INErINSICS FOr PEL INSTIUCTION ...o.viiiiiiiiie et bbbt b b eneas 151
12.2.5. INtrINSICS FOr PE2 INSTIUCTIONS ...ttt bbb n s 160
12.2.6. INEFINSICS FOI STEINQ ...ttt b e b e bt b et e st e b e besbesbesneeneas 165
12.2.7. INTFINSICS FOF FPU ...ttt bbbttt b e s bbbt b e e bt e n e e e e nb e besbesbeeneeneas 170
12.2.8. INEFINSICS FOr TLBOP ...ttt bbb b e bbbt b e e bt e s e e e e sbesbesbesbesneeneas 176
12.2.9. INErINSICS FOr SATUFATION ISA L. .o bbbt se e b e bbb e saeeneas 186
12.2.10. INTFINSICS FOI INTEITUDT .. .ottt b e bbb et ne e e e b et sbesbeeneeneas 196
12.2.11. INtrinSicS fOr COP ISA EXTENSIONuiiuiiiiiiiiiiieeie ittt ettt sttt b et bbbt b et e b e b b 211
13. USER/KERNEL SPACE ...ttt b et b b s bt h bbb b st b ettt n s 235
13.1. PRIVILEGE RESOURCES.......ccttitttuttittisttesteestee bttt sttt e s heeabe bt eabeesbeshs e sk e e abe e ke e be e Reeeh e e ehe e ebe ekt embeam b e ebbeabeenbeesbeenbeannens 235
13.1.1. Configuration SYSTEM REGISTEIS.ciiiiiieieiee ittt bbbttt eebe b b besneeneas 235
13.1.2. INTErrUPLION SYSTEM REGISTETS .. .ciiiiieiie ettt bbbt n e eneas 235
13.1.3. MIMU SYSEEIM REGISTEES ...ttt e bbbttt e e e b e bt e b et e be e b e et et e sbesbesbesbeereens 235
13.1.4. ICE SYSTEIM REGISTEIS ... ittt bbbttt et b e b e bt bt Rt e ne e b e b et sbe st e e neen e e e ennas 236
13.1.5. Performance MoNItOriNg REGISTEISociiiiiiii ittt e b bbb 236
13.1.6. Local MemMOry DIMA REGISTEEScouiiiiiiiiieie ittt ettt sttt b et bbbt e e et e b b e sbesbeebeens 236
13.1.7. Implementation-Dependent REGISTEFSccii ittt sb et b b eneas 236
13.2. PRIVILEGE RESOURCE ACCESS INSTRUCTIONSuciittiiutiattattateattesteesteesteessesssessesssssssesseasseansesssessssssssssssssesssesssnns 237

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,

reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.
Andes_Programming_Guide_for_ISA_V3_PG0O10_V1.6

Page viii

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY
13.2.1. Read from/Write t0 SYSteM REGISTEISoiiiiiiiiiiee et et 237
13.2.2. Jump Register with System Register UPAAtecoo i 237
13.2.3. 1Y\ LG Fa 1y § 0 (o1 Ao TSROSO 238

13.3. PRIVILEGED INSTRUCTIONS uttttitiieiiiiiittettiessseistbatssessssisbbesssesssssassbasssesssssssbbssasssesssabbasasssesssasbbtasssesssasrtbasseess 239
13.3.1. IR S 2] g 0] o R0 g (] 01 o eSO U USSPV PRPRPRPRON 239
13.3.2. SETGIEE/SETGIU.D¢Set Glabal Interruption ENable ... 239
13.3.3. ({00 I I 07 To] g T 0] o] 1 o] FRRTETT T SRR 240
13.3.4. STANDBY W altFOEEXIEENAIEVENT.......occiieiie ettt e e s e e e s st b e e e s bba e e s eaees 240

13.4. INSTRUCTIONS FOR USER-SPACE PROGRAM TO ACCESS SYSTEM RESOURCEScvviiiiiiiiiiiiiiiie e siiisieee e seiinnns 241
13.4.1. DPREF/DPREFI: DAta PrefetChco ettt sttt sttt e s eb et s e s satan e s s ebbee s 241
13.4.2. SETEND.B/SETEND.L: Set Data ENGIAN.........ccciiiiiiiii ettt 241
13.4.3. ({00 I I 0F= o] T 0] o] 1 o] FRETEUR RS TRR 241
13.4.4. ISB/DSB: Data/Instruction Serialization BarTIErcoocviiiiiii ittt 242
13.4.5. STANDBY: Walit fOr EXTErNaAl EVENT.......cccoiiiii ittt sttt ebe e e st e e s s baa e e s eares 242

13.5. SERIALIZATIONS RELATED TO CPU CONTROL REGISTER ACCESSESuuttiiiieiiiiiitiiiiieesssiisiisiseesesssssssssssssessssssnnnns 243

I S I T 1NN 7 A1 7N B N 245

14.1. RN I Lo I 1N 1 TSR 245

14.2. [N Y ol I TN 1N 245

14.3. GUIDELINES TO DECIDE LINKING IMODEociiiiiiiiiiiiiii ettt ettt sttt a it e s s s e bbb e s s s e s s s s bbb b e e s s e s s s s sabbbaneee e s 245

15. LINKER SCRIPT GENERATIONooiiiiii ettt ettt s ettt e e e ettt e e s e avee e s s bte s e sabtee e s sabesesssbaeessaseeeesssreeessreneeans 246

15.1. SCRIPT FORMAT SAG AND ITS SYNTAX .ciiiittttiiieiiieiit bttt e e e et iibbat e e e s e s s seb bbb e e e s e s s sa bbb b e s s e esssasbb b b ebssasssssabbbbseseessssasbbaees 246
15.1.1. BNF NOtation fOF SAG SYNTAXcouiiuiiiiiiieieie ittt bbbttt see bbb be e 246
15.1.2. Formal Syntax Of SAG FOFMAL ..o ettt e bbb 248

15.2. LINKER SCRIPT GENERATOR (LDSAG)iittiuiitiaieuieiteste sttt ste et sbe st sbe sttt et e e esbesbesbesbesbeebe e e anbeseesbesbesbesseaneans 260

(ST O 1= T | T O I o I TR 262

16.1. = I = [T 262

16.2. Y T LN = = I = T =TT 263

17, ANDES IMUCULIB ...ttt et ettt e e et e et e e e s b e e e sabte e e e sabeeeesabbeeesabaeeeesabeeesasbeeesaseeeesssreeesasreneeans 265

17.1. [= LT =t o1 = |V, [01 U LI | ST 265

17.2. MCULIB PRINTE IMPLEMENTATION ...utttitiieiiiiittttitteeesseistbstssessssisssssssssssssiassssssssssssssssssssssssssissssssssssessisssssssssesssnns 265

17.3. SO TN] (e I 1 =TT N0 1 TR 269

18. VIRTUAL HOSTING ... oottt ettt e e et e et e e e s b e e e s aate e e e sabeeeesbbeeesabeeeessabeeesssbeeessnseeeesssrenesasseneeans 270

19. ADVANCED PROGRAMMING OPTIMIZATION ...oooii ettt ettt et svaea e srvee e s sbae e 272

19.1. (0= N [V 1 VN (0] L O = 10N LR 272

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PG0O10_V1.6

ANDES

Andes_Programming_Guide_for_ISA_V3_PG0O10_V1.6

Andes Programming Guide for ISA V3 TECHNOLOGY
19.1.1. Options for Code Size OPLIMIZATION ..ot sbe e 272
19.1.2. Options for Code Speed OPLIMUZATIONccoiiiiiiie e ea 273
19.1.3. Options to ReMOVE UNUSEA SECTIONS ..ottt bbb bbb eneas 275
19.1.4. Options to Use EXO OPLIMIZATIONcc.ooiiiiiiieieee et bbb st enen 275
19.1.5. OptiopSTOUSETFCOPTIMTIZALIONovevceiiece e 276
19.1.6. Notice on SOMEe OPtIMIZATION OPLIONScuviiiiiiieiiire et 277
19.1.7. Optimization Levels and Default Applied OPLiONScoeoiiiiiiiii e 278

19.2. EXO OPTIMIZATION: . L. Svwr St sl St ettt ettt ettt ettt e bt e be ettt e e he e s he e ebe et e e bt anbeesbesbeesbeenbeenneennens 280
19.2.1. Sy ed o o] @ ar=Ta o I o a1 oTo] o SRR P PR TRURPR 281
19.2.2. EX9 Table Shared by Multiple Separately-linked Program Modules............ccooeoiiiniiiiiinicinnne 281

19.3. IFC (INLINE FUNCTION CALL) OPTIMIZATION ...utiutttisttiteatiateaseaseesseatestesuessesseasesseessessessessessessessssnsesssssessessessessenns 283

19.4. ZERO OVERHEAD LOOP OPTIMIZATION ...uttittittaietaueeaueaateasstasteastesssasteesseasseassesssesssssssssssesseansesssesssessssssesssesssesssens 285
19.4.1. Zero Overhead Loop Optimization LImMItations...........cccoiiiiiiiiiiie e 286
19.4.2. Disable ZOL Optimization for Specific FUNCLIONS OF LOOPSccviiiiiiiiiiie s 287

19.5. INSTRUCTION MAX/MIN OF PERFORMANCE EXTENSION.....cutiuttieititeitestentesieateeseeiestestestessessesseeneeseesseseessessesnenns 289

19.6. PRIMITIVE DATA TYPE MINT ittt ittt sttt sttt e bt bkt h e s bt e s b oo be e be e ab e e a e e ehe e ebe e bt e bt anbees b e sbeesbeenbeenbeannens 290

19.7. ADDRESSING SPACE FOR PROGRAMS.......ccitttttittiittaietattaateasteasteassesssasteesteasteaseaseeaseesbeeaseeaseanseasseassesbeesbeesbeesneaseens 292
19.7.1. Small Data Area and RelAXaiON ...t e bbbt nn 292
19.7.2. (0700 [1V, oo [T OO SO TP 295

19.8. LINK TIME OPTIMIZATION IN GCCottt ettt b ettt s bt eb e e bt e bt e st e ebbesbe e st e e nbeenbe e e 296
19.8.1. L0171 o I 1 OO 296
19.8.2. NOtice When APPIYING LT O ...ttt b bbbt e bbb sbe bt ens 296

19.9. FUNCTION WITH VARIABLE NUMBER OF ARGUMENTSutitttattatteateasteesteesieassesssesssesssesseesseassesssesssessssssssssessnessnens 297

19.10. INLINE ASSEMBLY PROGRAMMINGccutttttauttaittauetsteeaseasseasseassesssessessseessesssesssesssssssssseasstansesssesssesssessesssesssesness 299
L TN S €= o =T - 1 OSSPSR UUUTURPRPRURN 299
19.10.2. SYMDOIIC OPEIraNGd NAIMEoiiiiitiiieite ettt bbbttt e e e s b e be bt ebesbeese e e et e sbesaesbesneaneas 300
L TR0 TR TR O o] o o 1= it N) ST URUSUSOUUUTURPRPRURN 301
19.10.4. ReEAA-WIITE OPEIANGottt ettt ettt b e bt e h e e e e b e ebesb e s bt e bt e bt e e et e sbesbesbesbeebeeneennas 302
19.10.5. CoNSLraint MOITIEE "&".... .ottt b e bbbt e bt e e et et sbesbesreeneas 303
TR0 TG T Vo] F- | =SSOSR 304
19.10.7. ANAeS-SPECITIC CONSTIAINTSiitiitiiiiietiiiee ettt bttt se bbbt bt e bt e e e be st saesbesneeneas 305

APPENDIX ...ttt bbbt b bR b ekt b e Rt eh £kt R e e R oAb e e e Rt b e £ e R e e b et e b e eb et ebenb et ebenre e etenres 306

PROGRAMMING TIPS ...ttt itie ittt ettt sttt ettt ettt b e eheesb e e skt e ee o2 ee e R et £ R e e ohe £ ebe 22 b e 2R b £ e R b £ eE £ e eE e e eE e e Ee e s ke eReeehe e ebe e ebeanbeenbeanbennee e 306
Move libc.a to the beginNing Of tEXE SECTION.........cciiiii e b 306
Display register information and debug on reset by GDB cOmMmMands............ccooieiiiininenininice e 307

reproduced, or disclosed in wholé or ih part without prior wiitten permission of Andes Technology Corporation. Page x

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGOY

List of Tables
TABLE 1. INSTRUCTIONS SPECIFIC TO ANDES V3 TOOLCHAIN IMPLEMENTATION VERSIONSooviiiiiiiiiiinieieenie e 3
TABLE 2. ISA EXTENSIONS AND SUPPORTED ANDESCORESocitiitiiiiiiisiiiieie sttt sne s snssn e 4
TABLE 3. DEPRECATED PSEUDO-INSTRUCTIONS.. N o.tcutiiitiiiiistiiesisic sttt sttt 37
TABLE 4. S1ZE AND BYTE ALIGNMENTORIRRIMITIVE DATA TYPES ...ttt s 41
TABLE 5. MAPPING OF € RRIMITIVE DATA TYPES ..ttt sttt bbbt an bbbt nr s 43
TABLE 6. ANDES GPRSWITH ABI USAGE CONVENTIONcciiiiitiitiiie ittt sr ettt et sn bbb sn e snesre e aneas 44
TABLE 7. ANDES FPRS WITH ABT USAGE CONVENTIONcciutiiiiitiitiitt ittt et sre bbbt snesr bbb saesnesnesnesre e i 52
TABLE 8. ANDES PREDEFINED IMACROS......ccutiitiiiitiiriitt ittt sr et sr sttt sh bbb a e bbb bt e e ab e b n b ene s 55
TABLE 9. OBSOLETE PREDEFINED IMACROSciutiitiitiiititiaiise et ss st sh sttt nb s sh bbbt bbbt bt se e en bbb ene s 59
TABLE 10. INTRINSICS FOR LOAD/ STOREccuttittiteiettiteniett sttt sttt sse sttt he et sbe ekt ab et b e ab e eb e ab e ekt sb et ek e ab et et e sbe e ebeane e ebennes 90
TABLE 11. INTRINSICS FOR READ/WRITE SYSTEM AND USR REGISTERS......ccutitiiiitiiiiintinieiesiensesesie et seese s s 91
TABLE 12. MISCELLANEOUS INTRINSICSciuiiitiieitiirisie sttt sr st sr sttt b b sh skt b bbb bbbt bbb e e an e b an b ene s 91
TABLE 13. INTRINSICS FOR PEL INSTRUCTIONSc.viitiittiiiiiiiiieie st sr sttt sr ettt sn bbbt sn e sn b 94
TABLE 14. INTRINSICS FOR PE2 INSTRUCTIONS.uiittittitiatisiieie it ss st sttt e bt sr et sbe st e e e sn bbb e et e e sn e b sn e nn e ene s 95
TABLE 15. INTRINSICS FOR STRINGcutittittetiestitesttarestesiessessteste e ase st bt sseesse e s b b sh ke s bt ke e e e s e b e bt s b s b e e b e e b e st e e e an e b anenr e s beene s 95
TABLE 16. INTRINSICS FOR FPUoiiiiiiiiiiiie e bbb bbbt sn b sn e 95
TABLE 17. INTRINSICS FOR TLBOP ...ttt b r bbbt b e eae s 96
TABLE 18. INTRINSICS FOR SATURATION ISA ... bbb 96
TABLE 19. INTRINSICS FOR INTERRUPTIONccutiutitiitiittite sttt e st sr bbb sh bbb et sa e ah bbb se bbbt nn e eae s 97
TABLE 20. INTRINSICS FOR COP INSTRUCTIONSoitiittitiatiiiieiieitisr st sttt se bt sre bbb e sbsan et bbbt saesn b sn b sieene s 98
TABLE 21. ACCESSING SYSTEM REGISTERSccuviitiitiitiittiiiaiieteie st sr st sttt e et ss et sh bbb e bbb bbb s ne e sn bbb 237
TABLE 22. INSTRUCTION TRANSLATION ONZOFFcuiitiiteiietiiteiett ettt stttk b bbbt b bbbt b bt ab e n e nn s 237
TABLE 23. TLBOP SUBTYPES ..ottt sttt sh kst h b bbbk e e b b e bbb bbb ne e n bbb 238
TABLE 24, CCTL SUBTYPES.....cuttitiitiittitiatesitette ettt sr sttt st sa s ah bbbt b e b s e e e bR e b e b e b £ e b e e e e b e b e R e e bbb e e e e e e en e b bbb 241
TABLE 25. THREE CODE SIZE OPTIMIZATION LEVELS OF =OS ..ottt 272
TABLE 26. TWO LOOP UNROLLING OPTIMIZATIONcoutittitiiiiiieiti sttt sttt ss st sne st e b an bbb nassnesne e sr e 273
TABLE 27. DEFAULT APPLIED GCC OPTIONS AT EACH OPTIMIZATION LEVEL ...ocviiviiiiiiiiiiicis e 278

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PG0O10_V1.6

Page xi

. N
Andes Programming Guide for ISA V3 énﬂQ_DEGsv

List of Figures

FIGURE 1. ABI2 STACK FRAME SCENARIO .. .cititiiiiiiitiitt sttt sttt ar sttt h bbb e bbb et e s a e an b sn b 46
FIGURE 2. ABI2 STACK FRAME LAYOUT ..ottt sttt h bbbt a e ah bbbt a e an b nr e 47
FIGURE 3. FUNCTION PROLOGUE FOR STACK ERAME CONSTRUCTION......ccctitiiiiiiiiiiiisiis ittt 48
FIGURE 4. FUNCTION EPILQGUE FOR Sﬂlck FRAME DESTRUCTION ...ttt s 48
FIGURE 5. ABI2 SAMPLE QF/SIMPLEV FUNC"[ION STACK FRAME ...ciiiiiiiie ettt ettt st be e e be e be e e be e baaenbee s 50
FIGURE 6. ABI2 SAMPLE OF CALLING AVFUNCTIO,N WITH ARGUMENTStittetieite ettt sttt ettt s e sie e sae e sbeesbeebe e sseeseeeseeeneeas 51
FIGURE 7. ABI2 SAMPLE OF CALLING A VARIADIC FUNCTION.....ccutiiiiiiiiiiiire ittt s 51
FIGURE 8. STACK FRAME COMPARISON BETWEEN ABI2 AND ABIZ2FP+.......ooiiiiiiicc s 53
FIGURE 9. PRINTF IMPLEMENTATION ON ANDES EVALUATION BOARD AND ON USERS’ BOARDS..........ccoiiininiiiniseeieeenes 268

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P .
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age xn

Andes_Programming_Guide_for_ISA_V3_PG0O10_V1.6

- .
Andes Programming Guide for ISA V3 Q.NQEGSY

Typographical Convention Index

Document Element Font Font Style Size Color
Normal text ~ Qﬂmﬂg Normal 12 Black
Command line, 'sourcel | ((udibia console | Normal 11 Indigo
code or file gaths

VARIABLES OR | | “=!C(Glyeipa/CcoNSOLE | BOLD + ALL-CAPS |11 INDIGO
PARAMETERS IN COMMAND

LINE, SOURCE CODE OR

FILE PATHS

Note or warning Georgia Normal 12 Red
Hyperlink Georgia Underlined 12 Blue

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age xm

Andes_Programming_Guide_for_ISA_V3_PG010_V1.6

Andes Programming Guide for ISA V3 éﬂggg

1. Overview

Andes toolchain isgartof-AndesBoard Support Package (BSP) and AndeSight™, an integrated
development environment for.software development. It is mainly used for compiling, assembling,
and linking users’|C/C++ land-assembly programs and generating executables of AndeStar™,
Andes’ 16/32-bit mixable-instruction.set architecture. For detailed information about AndeSight
and AndeStar, please refer to AndeSight User Manual and AndeStar Instruction Set

Architecture Manual.

Andes toolchain is built from GNU, thus the options of gcc, as, and Id are inherited. In addition
to GNU-based options, Andes specific options are provided for some unique features such as
performance and code size tradeoff of AndeStar.

Andes library support includes glibc, uClibc, Newlib and MCUIib. Glibc and uClibc are for
0OS-based applications and the other two are for non-OS applications. Newlib is an open source
project and C library intended for use on embedded systems library. Based on Newlib, MCUIib is

a library with Andes optimization enhancement for MCU applications and small code size.

This document focuses on the usages of compiler and assembler for toolchains of ISA V3. For

toolchains based on ISA V1 or V2, please refer to Andes Programming Guide for ISA V1 and V2.

The following outlines the structure of this document:

B Chapter 2, 3 and 4 are simplified descriptions of AndeStar and basic usage of toolchains.
B Chapter 5, 6, and 7 describe the pseudo-ops, pseudo-instructions, and macros.
Programmers can manage and write assembly with these capabilities.

Chapter 8 describes Application Binary Interface (ABI).

Chapter 9 describes Andes specific features.

Chapter 10 describes Andes C language extension for interrupt service routine.

Chapter 11 describes ROM patching approaches.

Chapter 12 describes Andes intrinsic functions for programming respectively.

Chapter 13 describes user and kernel space. OS or system programmers should find this
chapter important when configuring Andes CPUs for interruption, MMU, ICE, local
memory, and so on.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 1
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY

1.1.

Chapter 14 describes the static and dynamic linking and loading.
Chapter 15 introduces a simple mechanism to generate linker scripts.
Chapter 16 describes the object file format.

Chapter 17 describes. Andes MCUIib.

Chapter 18 depictsiVirtual Hosting.

Chapter 19 introduces advanced programming optimization in coding level.

What’s New Since BSP v4.0

The following summarizes the major enhancements in V3-family toolchains since BSP v4.0:

Command line options: The compilation options, including compiler, assembler and

linker options, since BSP v4.0 all follow GNU usage conventions. Post-optimization options

along with some options in earlier versions are deprecated. Please refer to Section 2.2 and

its subsections for the up-to-date options.

Operating System Reserved Registers $p0 and $p1l: For toolchains of BSP v4.0 or

later versions, $p0 and $p1 are not recommended for use in user code. Please refer to

Section 3.2.5 for usage notes about the two registers.

Application binary interface (ABI): A new ABI “ABI2FP+” is defined for floating-point

toolchains (v3f and v3s) since BSP v4.0. For details, please refer to Section 8.2.2.

Andes pre-defined macros: Starting from BSP v4.0, the names of Andes pre-defined

macros are revised for conforming to the GCC coding conventions. See Section 9.2 for a

complete list of updated Andes pre-defined macros and Section 9.2.1 for the deprecated list.

Virtual Hosting: The Virtual Hosting support is implemented in standard library rather

than in AICE controller program (ICEman). Please see Chapter 18 for detalils.

More syntax checking:

® The second operand of pseudo instruction “la” now can only accept symbol reference.
Using immediate value is invalid and reported as an error.

® In the assembly macro definition, you have to use “\” character as prefix to evaluate
arguments. See Section 7.2 for details.

® The constant suffix (e.g., “L”, “UL”) is used in C language. If it appears in assembly code,
the assembler will help to report error.

® Compiler now is able to report more warnings if there may be potential issues in users’

programs.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 2
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂgisv

2. Getting Started

2.1. Andes Instruction Set Architecture and Instructions

Andes defines three versions of baseline instruction set, denoted by the version numbers 1 to 3.
Basically the lateriversions‘aré-the upgrade and extension of the previous versions. This
document is specialized for programming with ISA V3 family, including v3, v3j, v3f, v3s and v3m
toolchains. You may refer to Table 1 for instructions specific to each Andes V3 toolchain
implementation version and Table 2 for extended instruction sets and their supported

AndesCores.

Table 1. Instructions Specific to Andes V3 Toolchain Implementation Versions

AndeStar ISA Features Andes Toolchain Implementation Versions
Name Reference v3 v3j v3f v3s v3m

Baseline V3 AndeStar ISA Architecture Manual]]]]
Baseline

AndeStar ISA VV3m Specification]
V3m/*V3im+
Reduced_Regs
(16 registers)]]
STRING AndeStar ISA Architecture Manual
PE1
PE2
sP
floating-point | AndeStar ISA FPU Extension]]
DP Manual
floating-point]
DSP extension | AndeStar DSP ISA Extension " " " "
ZOL Specification

*Vv3m+ ISA is a V3m ISA plus additional instructions for even better code size compaction when the code size
optimization option “-0s2” or “-0s3/-0s” is applied. For V3m+ processors, please use the V3m toolchain and
add “—march=v3m+” to both compiler and linker options. AndeSight IDE users can select chip profiles for V3m+
CPU cores to enable the option “—march=v3m+".

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 3

Andes Programming Guide for ISA V3

ANDES

TECHMNOLOGY

Table 2. ISA Extensions and Supported AndesCores

AndeStar ISA
Reference Supported AndesCores
Extension
AndeStarInst(uctio‘n Set Architecture
Audio N968, N1068
Audio Extension Manual
i ‘
AndeStarnstruction Set Architecture
FPU N1068, N1337, N15, D1088, D15
FPU Extension Manual
AndeStar Instruction Set Architecture
COP_ISA N1068, N1337, D1088
Coprocessor Extension Manual
) AndeStar Saturation Arithmetic ISA N968, N1068, N1337, N15, D1088,
Saturation D15
Extension Specification
DSP extension
AndeStar DSP ISA Extension Specification D1088, D15
and ZOL

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 4
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- i
Andes Programming Guide for ISA V3 éﬂgggsv

2.2. Command Line Options

Environment variable $PATH is suggested to include the path to Andes GNU toolchain

executables. For example

mypc> PATH=/F Ly sp#12/nds32le-elf-newlib-v3/bin:$PATH

2.2.1. Compiler Options

To get a list of all supported options, use command:
mypc> nds32le-elf-gcc —help

Usage: nds32le-elf-gcc [options] file...

Options:

-pass-exit-codes Exit with highest error code from a phase

--help Display this information

--target-help Display target specific command line options

——help={common|optimizers|params|target|wamings] ["]{joined|separate |undocumented}}[, - - -]
Display specific types of command line options

(Use "-v --help® to display command line options of sub-processes)

--version Display compiler version information

-dumpspecs Display all of the built in spec strings

-dumpversion Display the version of the compiler

—dumpmachine Display the compiler®s target processor

-print-search-dirs Display the directories in the compiler®s search
path

-print-libgcc-file-name Display the name of the compiler®s companion
library

-print-file-name=<lib> Display the full path to library <lib>

-print-prog-name=<prog> Display the full path to compiler component
<prog>

-print-multiarch Display the target®s normalized GNU triplet, used
as a component in the library path

-print-multi-directory Display the root directory for versions of libgcc

-print-multi-lib Display the mapping between command line options
and multiple library search directories

-print-multi-os-directory Display the relative path to OS libraries

-print-sysroot Display the target libraries directory

-print-sysroot-headers-suffix Display the sysroot suffix used to find headers

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 5
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY

-Wa,<options> Pass comma-separated <options> on to the
assembler

-Wp,<options> Pass comma-separated <options> on to the
preprocessor

-WI,<options> Pass comma-separated <options> on to the linker

-Xassembler Pass <arg> on to the assembler

-Xpreproce sog:)1ifﬁ : I Pass <arg> on to the preprocessor

-Xlinker <arg (: IEa Pass <arg> on to the linker

-save-temp Do not delete intermediate files

-save-temp =R@Iease Do not delete intermediate files

-no-canonicat=prefixes Do not canonicalize paths when building relative
prefixes to other gcc components

-pipe Use pipes rather than intermediate files

-time Time the execution of each subprocess

-specs=<file> Override built-in specs with the contents of
<file>

-std=<standard> Assume that the input sources are for <standard>

--sysroot=<directory> Use <directory> as the root directory for headers
and libraries

-B <directory> Add <directory> to the compiler®s search paths

-v Display the programs invoked by the compiler

—#tt Like -v but options quoted and commands not
executed

-E Preprocess only; do not compile, assemble or link

-S Compile only; do not assemble or link

-C Compile and assemble, but do not link

-0 <file> Place the output into <file>

-pie Create a position independent executable

-x <language> Specify the language of the following input
files.

Permissible languages include: c c++ assembler
none "none” means revert to the default behavior
of guessing the language based on the file"s
extension

Options starting with -g, -f, -m, -0, -W, or --param are automatically passed on to
the various sub-processes invoked by nds32le-elf-gcc. In order to pass other options
on to these processes the -W<letter> options must be used.

For target specific options, enter:
mypc> nds32le-elf-gcc —target-help

The following options are target specific:
-EB Generate code in big-endian mode.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 6
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3

ANDES

TECHMNOLOGY

-EL
-G<number>

-ml6-bit
-malign-functions
-malways-al i

Generate code in little-endian mode.

Put global and static data smaller than <number>
bytes into a special section (on some targets)
Generate 16-bit instructions.

Align function entry to 4 byte.

-march=
-mcache-bloc

RéTea

Adways align function entry, jump target and return

Officiafs
ecify the name of the target architecture.

Specify the size of each cache block, which must be a power
2 |Jbetween 4 and 512.

-mcmode l=
-mcmov
-mconfig-fpu=

-mconfig-mul=

-mconfig-register-ports=

-mcpu=
-mctor-dtor
-mex9

-mext-dsp
-mext-fpu-dp
-mext-fpu-fma

-mext-fpu-sp
-mext-perf
-mext-perf2
-mext-string
-mext-zol
-mfloat-abi=

-mfp-as-gp
-mfull-regs
-mhw-abs
-mifc

-minnermost-loop
-misr-vector-size=

-mload-store-opt
-mmemory-model=
-mno-fp-as-gp
-mprint-stall-cycles

SpeCify the address generation strategy for code model.
Generate conditional move instructions.

Specify a fpu configuration value from O to 7; 0-3 is as
FPU spec says, and 4-7 is corresponding to 0-3.
Specify configuration of instruction mul: fastl, fast2
or slow. The default is fastl.

Specify how many read/write ports for n9/nl10 cores.
value should be 3r2w or 2rilw.

Specify the cpu for pipeline model.

Enable constructor/destructor feature.

Use special directives to guide linker doing ex9
optimization.

Generate DSP extension instructions.

Generate double-precision floating-point instructions.
Generate floating-point multiply-accumulation
instructions.

The

Generate single-precision floating-point instructions.
Generate performance extension instructions.

Generate performance extension version 2 instructions.
Generate string extension instructions.

Insert the hardware loop directive.

Specify if floating point hardware should be used.
valid value i1s : soft, hard.

Force performing fp-as-gp optimization.

Use full-set registers for register allocation.
Generate hardware abs instructions

Use special directives to guide linker doing ifc
optimization.

Insert the innermost loop directive.

Specify the size of each interrupt vector, which must be
4 or 16.

Enable load store optimization.

Specify the memory model, fast or slow memory.

Forbid performing fp-as-gp optimization.

Print stall cycles due to structural or data dependencies.
It should be used with the option "-S*. Note that stall
cycles are determined by the compiler®s pipeline model
and it may not be precise.

The

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 7

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY
-mreduced-regs Use reduced-set registers for register allocation.
-mregrename Enable target dependent register rename

optimization.
-mrelax Guide linker to relax instructions.
-mrelax-hint Insert relax hint for linker to do relaxation.
-msoft-fp-akd le operand commutative for soft floating

-munal igne —a@sﬁﬁcijlab e unaligned word and halfword accesses to packed
ta

-mv3push
-mvh

Generate v3 push25/pop25 instructions.

ReleaSﬁb e Virtual Hosting support.

Known floating-point ABls (for use with the -mfloat-abi= option):
hard soft

Known floating-point number of registers (for use with the -mconfig-fpu= option):
01234567

Known arch types (for use with the -march= option):
v2 v2j v3 v3f v3j v3m v3m+ v3s

Known cmodel types (for use with the -mcmodel= option):
large medium small

Known cpu types (for use with the -mcpu= option):
d10 d1088 d1088-fpu d1088-spu dl5 d15f d15s e8 e801 €830 nl10 nl1l033 nl1l033-fpu
n1033-spu nl1033a n1l068 nl1l068-fpu nl068-spu nl068a nl068a-fpu nl1l068a-spu nl2
n1213 n1233 n1233-fpu n1233-spu n1l3 nl1l337 nl1l337-fpu nl1337-spu nl5 nl5f nl5s
n6 n650 n7 n705 n8 n801 n820 n9 n903 n903a n968 n968a s8 s801 s830 sn8 sn801

NOTE: If you specify the options “-mcmodel”, “~mvh”, or “-mext-zol” for compilation, use GCC
or G++ to link programs and apply these options for linking as well.

2.2.2. Assembler Options

To get a list of all supported options, use command:
mypc> nds32le-elf-as —help

Usage: nds32le-elf-as [option...] [asmfile.._]

Options:
-a[sub-option...] Turn on listings
Sub-options [default hls]:
c Omit false conditionals.
d Omit debugging directives.
h Include high-level source.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 8
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3

ANDES

TECHMNOLOGY

--alternate

| Include assembly.

m Include macro expansions.
n Omit forms processing.

S Include symbols.

=FILE List to FILE (must be last sub-option).

2 detoym s Qfﬁuai

-—-execstac

--noexecst CRe I e a

Ily turn on alternate macro syntax.
assembler debugging messages.

symbol SYM to given value.

executable stack for this object.

t Jrequire executable stack for this object.

Requi

-f S whitespace and comment preprocessing.

-g --gen-debug Generate debugging information.

--gstabs Generate STABS debugging information.

--gstabs+ Generate STABS debug info with GNU extensions.
--gdwarf-2 Generate DWARF2 debugging information.

--help Show this message and exit.

--target-help Show target specific options.

-1 DIR Add DIR to search list for .include directives.
-J Don"t warn about signed overflow.

-K Warn when differences altered for long displacements.
-L,--keep-locals Keep local symbols (e.g. starting with "L").
-M,--mri Assemble In MRI compatibility mode.

-maie-conf <*_aie>
--MD FILE

Set Andes Copilot supported mata file
Write dependency information in FILE (default none).

-nocpp Ignored.

-0 OBJFILE Name the object-file output OBJFILE (default a.out).
-R Fold data section into text section.

--statistics Print various measured statistics from execution.

--strip-local-absolute
--traditional-format
--version

-W
—-warn
--fatal-warnings
—-—itbl INSTTBL

-—-no-warn

--listing-lhs-width

--listing-lhs-width2

—--listing-rhs-width

--listing-cont-lines

Strip local absolute symbols.

Use same format as native assembler when possible.
Print assembler version number and exit.

Suppress warnings.

Don*"t suppress warnings.

Treat warnings as errors.

Extend instruction set to include instructions
matching the specifications defined in file INSTTBL.
Ignored.

Ignored.

Generate object file even after errors.

Set the width in words of the output data column of
the listing.
Set the width
the output data column; ignored if smaller than the
width of the first line.

Set the max width in characters of the lines from the
source file.

Set the maximum number of continuation lines used for
the output data column of the listing.

in words of the continuation lines of

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 9

n e, A
TECHMNOLOGY

Andes Programming Guide for ISA V3

NDS32 specific command line options:

-mel, -EL or -little
-meb, -EB or -big

Produce little endian data.
Produce big endian data.

-march=<arch name>

-mbasel ine=<basel ine>

-mfpu-freg=<freg>

-mabi=<abi>

-mal l-ext

-01 Optimize for performance.

-0Os Optimize for space.

-cpu or -m pu@tﬁn&i&! is <cpuname>.

-mno-fp-astgp-rel préss fp-as-gp relaxation for this file
-mb2bb-relax Back-to-back branch optimization
-mno-all-r IReIeaS&r ss all relaxation for this file
-mace=<shrl rt user defined instruction extension
-mcopO=<shrlibfile> Support coprocessor 0 extension
-mcopl=<shrlibfile> Support coprocessor 1 extension
-mcop2=<shrlibfile> Support coprocessor 2 extension
-mcop3=<shrlibfile> Support coprocessor 3 extension

Assemble for architecture <arch name> which could be
v3, v3j, v3m, v3m+, v3f, v3s, v2, v2j, v2f, v2s
Assemble for baseline <baseline> which could be v2,
v3, v3m

Specify a FPU configuration

<freg>

0: 8 SP / 4 DP registers

1: 16 SP / 8 DP registers

2: 32 SP / 16 DP registers

3: 32 SP / 32 DP registers

Specify a abi version <abi> could be vl1, v2, v2fp,

v2fpp
-m[no-]mac Enable/Disable Multiply instructions support
-m[no-]div Enable/Disable Divide instructions support
-m[no-]16bit-ext Enable/Disable 16-bit extension
-m[no-]dx-regs Enable/Disable d0/dl registers
-m[no-]perf-ext Enable/Disable Performance extension
-m[no-]perf2-ext Enable/Disable Performance extension 2
-m[no-]string-ext Enable/Disable String extension
-m[no-]reduced-regs Enable/Disable Reduced Register configuration
(GPR16) option
-m[no-Jaudio-isa-ext Enable/Disable AUDIO ISA extension
-m[no-]fpu-sp-ext Enable/Disable FPU SP extension
-m[no-]fpu-dp-ext Enable/Disable FPU DP extension
-m[no-]fpu-fma Enable/Disable FPU fused-multiply-add instructions
-m[no-]dsp-ext Enable/Disable DSP extension
-m[no-Jzol-ext Enable/Disable hardware loop extension

Turn on all extensions and instructions support

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 10

Andes Programming Guide for ISA V3 éﬂROEGsY

2.2.3. Linker Options

To get a list of all supported options, use command:
mypc> nds32le-elf-1d --help

Usage: nds CQ]%@iﬁ}]D ile..

Options:

-a KEYWORD Release Shared library control for HP/UX

compatibility
-A ARCH, --architecture ARCH Set architecture

-b TARGET, --format TARGET Specify target for following input files

-c FILE, --mri-script FILE Read MRI format linker script

--build-1d[=STYLE] Generate build 1D note

-d, -dc, -dp Force common symbols to be defined

-e ADDRESS, --entry ADDRESS Export all dynamic symbols

—--no-export-dynamic Undo the effect of --export-dynamic

-EB Link big-endian objects

-EL Link little-endian objects

-f SHLIB, --auxiliary SHLIB Auxiliary filter for shared object symbol
table

-F SHLIB, --filter SHLIB Filter for shared object symbol table

-g Ignored

-G SIZE, --gpsize SIZE Small data size (if no size, same as --shared)

-h FILENAME, -soname FILENAME Set internal name of shared library

-1 PROGRAM, --dynamic-linker Set PROGRAM as the dynamic linker to use
PROGRAM

-1 LIBNAME, --library LIBNAME Search for library LIBNAME

-L DIRECTORY, --library-path Add DIRECTORY to library search path

DIRECTORY

--sysroot=<DIRECTORY> Override the default sysroot location

-m EMULATION Set emulation

-M, --print-map Print map file on standard output

-n, --nmagic Do not page align data

-N, --omagic Do not page align data, do not make text
readonly

--no-omagic Page align data, make text readonly

-0 FILE, --output FILE Set output file name

-0 Optimize output file

-plugin PLUGIN Load named plugin

-plugin-opt ARG Send arg to last-loaded plugin

-flto Ignored for GCC LTO option compatibility

-flto-partition= Ignored for GCC LTO option compatibility

-fuse-I1d= Ignored for GCC linker option compatibility

-Qy Ignored for SVR4 compatibility

-q, --emit-relocs Generate relocations in final output

-r, -i, —--relocatable Generate relocatable output

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 11
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3

ANDES

TECHMNOLOGY

-R FILE, --just-symbols FILE
-s, --strip-all
-S, --strip-debug
--strip-discarded
--no-strip-gdi

-t, --trac chmg i a

-T FILE, -

—--default-script HILE, -dT
s svieoL LA AL
—--unique [=SECTTON]

-Ur

-v, —--version

-V

-x, —--discard-all

-X, —--discard-locals
--discard-none

-y SYMBOL, --trace-symbol
SYMBOL

-Y PATH

-(, --start-group

-), --end-group
—-—accept-unknown-input-arch

--no-accept-unknown-input-arch

--as-needed

--no-as-needed

-assert KEYWORD

-Bdynamic, -dy, -call_shared
-Bstatic, -dn, -non_shared,
-static

-Bsymbolic

-Bsymbolic-functions
--check-sections

--no-check-sections
--copy-dt-needed-entries

--no-copy-dt-needed-entries

--cref

--defsym SYMBOL=EXPRESSION
--demangle [=STYLE]
--embedded-relocs
--fatal-warnings

Just link symbols (if directory, same as
--rpath)

Strip all symbols

Strip debugging symbols

Strip symbols iIn discarded sections

Do not strip symbols in discarded sections
Trace file opens

Read linker script

Read default linker script

Start with undefined reference to SYMBOL
Don"t merge input [SECTION | orphan] sections
Build global constructor/destructor tables
Print version information

Print version and emulation information
Discard all local symbols

Discard temporary local symbols (default)
Don*t discard any local symbols

Trace mentions of SYMBOL

Default search path for Solaris compatibility
Start a group

End a group

Accept input files whose architecture cannot
be determined

Reject input files whose architecture is
unknown

Only set DT_NEEDED for following dynamic libs
if used

Always set DT_NEEDED for dynamic libraries
mentioned on the command line

Ignored for SunOS compatibility

Link against shared libraries

Do not link against shared libraries

Bind global references locally

Bind global function references locally
Check section addresses for overlaps
(default)

Do not check section addresses for overlaps
Copy DT_NEEDED links mentioned inside DSOs
that follow

Do not copy DT_NEEDED links mentioned inside
DSOs that follow

Output cross reference table

Define a symbol

Demangle symbol names [using STYLE]
Generate embedded relocs

Treat warnings as errors

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 12
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3

ANDES

TECHMNOLOGY

--no-fatal-warnings
-Ffini SYMBOL
--force-exe-suffix
--gc-sections
--no-gc-sections
--print-gc-

Do not treat warnings as errors (default)
Call SYMBOL at unload-time

Force generation of file with .exe suffix
Remove unused sections (on some targets)
Don"t remove unused sections (default)
List removed unused sections on stderr

--no-print Do not list removed unused sections
--hash-siz Set default hash table size close to <NUMBER>
--help Print option help

-init SYMB Call SYMBOL at load-time

-Map FILE Write a map file

--no-define-common
--no-demangle
--no-keep-memory
--no-undefined

—--allow-shlib-undefined

--no-allow-shlib-undefined

—--allow-multiple-definition
--no-undefined-version
--default-symver
--default-imported-symver

-—-no-warn-mismatch
--no-warn-search-mismatch
--no-whole-archive
--noinhibit-exec
-nostdlib

--oformat TARGET
--print-output-format
—-gmagic
--reduce-memory-overheads

Do not define Common storage

Do not demangle symbol names

Use less memory and more disk 1/0

Do not allow unresolved references in object
files

Allow unresolved references in shared
libraries

Do not allow unresolved references in shared
libs

Allow multiple definitions

Disallow undefined version

Create default symbol version

Create default symbol version for imported
symbols

Don®"t warn about mismatched input files
Don"t warn on finding an incompatible library
Turn off --whole-archive

Create an output file even if errors occur
Only use library directories specified on the
command line

Specify target of output file

Print default output format

Ignored for Linux compatibility

Reduce memory overheads, possibly taking much
longer

--relax Reduce code size by using target specific
optimizations
--no-relax Do not use relaxation techniques to reduce code

--retain-symbols-file FILE
-rpath PATH

-rpath-link PATH

-shared, -Bshareable

-pie, --pic-executable
--sort-common
[=ascending]descending]

size

Keep only symbols listed in FILE

Set runtime shared library search path

Set link time shared library search path
Create a shared library

Create a position independent executable
Sort common symbols by alignment [in specified
order]

--sort-section name]alignment Sort sections by name or maximum alignment

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 13
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3

--spare-dynamic-tags COUNT
--split-by-file [=SIZE]
--split-by-reloc [=COUNT]
--stats

--target-help
—--task-11nk_S¥MBol
-—traditional -
--section- ta@fﬁ C I a I
SECTION=ADDR

“ves oeRE €S E
-Tdata ADDRESS

-Ttext ADDRESS
-Ttext-segment ADDRESS
-Trodata-segment ADDRESS

-Tldata-segment ADDRESS
--unresolved-symbols=<method>

--verbose [=NUMBER]
--version-script FILE
--version-exports-section
SYMBOL

—--dynamic-list-data
—--dynamic-list-cpp-new
--dynamic-list-cpp-typeinfo
——dynamic-list FILE
—--warn-common
—--warn-constructors

—--warn-multiple-gp
--warn-once
--warn-section-align

--warn-shared-textrel
--warn-alternate-em

--warn-unresolved-symbols
-—error-unresolved-symbols
--whole-archive

--wrap SYMBOL
--ignore-unresolved-symbol
SYMBOL

-z common-page-size=SIZE
-z defs
-z execstack

How many tags to reserve in _.dynamic section
Split output sections every SIZE octets
Split output sections every COUNT relocs
Print memory usage statistics

Display target specific options

Do task level linking

Use same format as native linker

Set address of named section

Set
Set
Set
Set
Set
Set
How

of
of
of
of

-bss section

.data section
-text section
text segment
address of rodata segment
address of ldata segment

to handle unresolved symbols.
ignore-all, report-all,
ignore-in-object-files,
ignore-in-shared-libs

Output lots of information during link

Read version information script

Take export symbols list from _exports, using
SYMBOL as the version.

Add data symbols to dynamic list

Use C++ operator new/delete dynamic list
Use C++ typeinfo dynamic list

Read dynamic list

Warn about duplicate common symbols

Warn if global constructors/destructors are

address
address
address
address

<method>
is:

seen
Warn
Warn
Warn

if the multiple GP values are used
only once per undefined symbol

if start of section changes due to
alignment

Warn if shared object has DT_TEXTREL

Warn if an object has alternate ELF machine
code

Report unresolved symbols as warnings
Report unresolved symbols as errors

Include all objects from following archives
Use wrapper functions for SYMBOL

Unresolved SYMBOL will not cause an error or
warning

NDS32 specific command line options:

Set common page size to SIZE
Report unresolved symbols in object files.
Mark executable as requiring executable stack

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

ANDES

TECHMNOLOGY

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY
-z max-page-size=SIZE Set maximum page size to SIZE
-z muldefs Allow multiple definitions
-z noexecstack Mark executable as not requiring executable

stack

--m[no-]fp-as-gp Disable/enable fp-as-gp relaxation
——mexport—symbols;ElLEggggggﬁ\\ Exporting symbols in linker script
V3 only command ‘ine*opkians:
--m[no-Jex9 D AlAA~ -~ Disable/enable link-time EX9 relaxation
—-mexport-¢x9=FILE = C D | Export EX9 table after linking
——mimport—eknglLE o Import Ex9 table for EX9 relaxation
—--mupdate-ex9 Update existing EX9 table
—-mex9-1imit=NUM Maximum number of entries in ex9 table
--mex9-loop-aware Avoid generate EX9 instruction inside loop
--m[no-Jifc Disable/enable link-time IFC optimization
--mifc-loop-aware Avoid generate IFC instruction inside loop

Please pay attention to the following two NDS32-specific commands:

--mfp-as-gp It's for data affinity optimization. Set $fp as $gp plus an offset to
use more code density instructions such as Iwi37.fp and
swi37.fp.

--mexport-symbols This option functions the same as the deprecated option

--mgen-symbol-1d-script. It generates a linker script format
file which saves all symbols for ROM patch to use for linking.

Linker options specialized for V3 targets are involved with either EX9 or IFC optimization.
Please refer to Section 19.2 or 19.3 for detailed descriptions.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 15
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂgisv

3.NDS32 Assembly Language

This chapter is interded-toprovide-an,outline and some hints for NDS assembly language. For
more details about assembly‘programming, please consult AndeStar Instruction Set
Architecture Manual) deme-code-in-the package and Using as (GNU Assembly Manual).

3.1. General Syntax

Use “#” at column 1 and “!” anywhere in the line except inside quotes. Start a comment at the
end of line.

Multiple instructions in a line are allowed though not recommended and should be separated by

An integer can be specified in decimal, octal (prefixed with 0), hexadecimal (prefixed with 0x), or
binary (prefixed with 0b) format. For example, 128, #128, 0200, #0200, 0x80, #0x80,
0b10000000, and #0b10000000 are all identical. The leading “#” is optional.

A floating number uses “e” and “E” to for exponential portion, “f” and “F” for single precision
floating point constant, and “d” and “D” for double precision floating point constant; for example,
0112.3450r 0d1.2345e12.

Assembler is not case-sensitive in general except user defined label. For example, “jral F1”is

different from “jral f1” while it is the same as “JRAL F1”.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 16
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggﬁ,

3.2. Registers

Please refer to AndeStar Instruction Set Architecture Manual in the package for detailed
information.

|
3.2.1. General Plllrpo‘se Registers (GPR)
There are 32 32-bit general purpose registers:
All $ro-$r31 are 5-bit addressable.
2. 4-bit addressable ones are $h0-$h15, which are mapped to $ro-$r11 and $r16-$r19
correspondingly.

3. 3-bit addressable ones are $00-$07, which are mapped to $ro-$r7 correspondingly.

3.2.2. Accumulators dO and d1
There are 2 64-bit accumulators:

1. High and low portion of $d0 and $d1 can be accessed separately as $d0.hi, $d0. lo,
$d1.hi,and $d1. lo.

2. There are instructions for moving them from and to GPRs.

NOTE: Though $d0 or $d1 instruction still work for assembly programming, compiler of BSP

v4.0 or later versions has no longer generated them.

3.2.3. Instruction Implied Registers

Some 16-bit instructions use implied registers:

Register $r5: BEQS38 and BNES38.

Register $ta ($ri15) : SLTI145, SLTSI145, SLT45, SLTS45, BEQZS8, and BNEZSS.
Register $fp ($r28): LWI37 and SWI137.

Register $gp ($r29): LBI.GP, LHI.GP, LWI.GP, SBI.GP, SHI.GP, and SWI .GP.
Register $sp ($r31): LWI137.SP and SWI37.SP.

ok 0o

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 17
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂgisv

3.2.4. Assembler Reserved Register $ta
Register $ta ($r15) is used
1. by assembler to translate pseudo instructions. Thus, its content may get corrupted.
2. to pass the'starting addressof called function at entry to the called function if PIC mode
is specified. Thus, its.content must be properly handled.
3. as implied register~Thus; its content must be preserved between SLT{S}{1}45 and
BLEQ | NE]9ZS8-instruction-pairs.

3.2.5. Operating System Reserved Registers $p0 and $p1

Registers $p0 and $p1 are used by operating system as scratch registers. Since interrupt can
occur at any user space instruction, its content may not be persistent from instruction to
instruction.

$p0 and $p1 are not recommended for use in user code. Here are some reminders if you want to
use the two registers in your code:
1. To avoid the corruption of $p0 and $p1, lower the interrupt level to O if you want to do
context switching in the interrupt.
2. You may use shadow $sp, rather than $p0 or $p1, as scratch registers when switching
between user-mode and superuser-mode.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 18
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3

ANDES

TECHMNOLOGY

3.3.

Missing Operand

In most cases, assembler accepts instructions with missing operands. When this occurs, the

default value of the/mjsﬂnggpﬂand% used.

3.3.1. Load/Stprellnstructions—)

C

- »(—‘ - =
JITICI

Coded As

Meaning Accepted As

I{b]h]w}i rt5,[ra5]

I{b]h|w}i rt5,[ra5+0]

I{b]h}si rt5,[ra5]

I{b]h}si rt5,[ra5+0]

I{b]jh|w}i.p rt5,[ra5]

<invalid>

I{b]h}si.p rt5,[ra5]

<invalid>

s{b]h]w}i rt5,[ra5]

s{b]h|w}i rt5,[ra5+0]

s{blh|w}i.p rt5,[ra5]

<invalid>

I{b]h|w} rt5,[ra5+rb5]

I{b]h]w} rt5,[ra5+rb5<<0]

I{b]h}s rt5,[ra5+rb5]

I{b]h}s rt5,[ra5+ rb5<<0]

s{b|h]w} rt5,[ra5+rb5]

s{b]h]w} rt5,[ra5+ rb5<<0]

I{b]h|w} rt5,[ra5]

I{b]h|w}i rt5,[ra5+0]

I{b]h}s rt5,[ra5]

I{b]h}si rt5,[ra5+0]

I{b]jh|w}.p rt5,[ra5]

<invalid>

I{b]h}s.p rt5,[ra5]

<invalid>

s{b]h]w} rt5,[ra5]

s{b]h|w}i rt5,[ra5+0]

s{b|h|w}.p rt5,[ra5]

<invalid>

I{bjh|w}.p rt5,[ra5],rb5

I{b]h|w}.p rt5,[ra5],rb5<<0

I{b]h}s.p rt5,[ra5],rb5

I{b]h}s.p rt5,[ra5],rb5<<0

s{b|hJw}.p rt5,[ra5],rb5

s{b|hjw}.p rt5,[ra5],rb5<<0

Imw.{a]b}{d]i}{m}
rt5,[ra5],rb5

Imw_{a]b}{d]i}{m} rt5,[ra5],rb5,0

smw.{a]b}{d]i}{m}
rt5,[ra5],rb5

smw.{a|b}d]i}{m} rt5,[ra5],rb5,0

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 19
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY
Coded As Meaning Accepted As
Iwup rt5, [ra5+rb5] Iwup rt5,[ra5+ rb5<<0]
lwup rt5,[ra5] <invalid>
swup rt5,qf5§i{géz;’~:_‘l‘\ swup rt5,[ra5+ rb5<<0]
swup rtS,qraé]’ Icial <invalid>
|{w|h|b}ia%R@j@aseJ I{w|h|b}i333 rt3,[ra3+0]
s{w|h|b}i1333 rt3,[ra3] s{w|h|b}i1333 rt3,[ra3+0]
Iwi37 rt3, [$fp] Iwi37 rt3, [$fp+0]
swi37 rt3,[$fp] swi37 rt3, [$fp+0]

3.3.2. Branch Instructions

Coded As Meaning Accepted As
jral rb5 jral $lIp,rb5
ret ret $lp
retb ret5 $lp

3.3.3. Special Instructions

Coded As Meaning Accepted As
Ilw rt5, [ra5+rb5] Ilw rt5,[ra5+ rb5<<0]
Ilw rt5,[ra5] <invalid>
scw rt5, [ra5+rb5] scw rt5,[ra5+ rb5<<0]
scw rt5,[ra5] <invalid>
dprefi.d dprefst,[ra5] dprefi.d dprefst, [ra5+0]
dprefi.w dprefst,[ra5] dprefi.w dprefst, [ra5+0]
dpref dprefst, [ra5+rb5] dpref dprefst, [ra5+rb5<<0]
dpref dprefst,[ra5] Dprefi.w dprefst, [ra5+0]
msync msync O
trap trap O

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 20
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

Coded As Meaning Accepted As
teqz rab teqz ra5, 0O

thez rab

break (O

thez ra5, O

i

e
0
©
Q
v g

®

break 0

iy

)

I
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed

reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation
Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 21

Andes Programming Guide for ISA V3 é,ﬂgisv

4. Machine Instructions

4.1. 32/16+bit

Full machine instructions, 32-bit and/or 16-bit, can be specified by programmers directly. They
can be mixed with any ‘restriction? By default compiler generates 32/16-bit mixed instructions,

but you can apply a compiler option —-mno-16-bit to generate pure 32-bit instructions.

In general, instructions may get converted into corresponding 16/32-bit version depending on
compiler optimization level:
1. When —-00 or —Os is specified, a 32-bit instruction will get converted into its 16-bit
version whenever possible.
2. When-0n (n=1-3), —0g or —Ofast is specified, a 16-bit instruction may get converted
back to its 32-bit version to fulfill alignment requirement.

4.2. Unaligned Data Handling

[1]s]mw instructions can be used to handle unaligned data accesses. The following focuses on

using [I'|s]mw instructions for block moves like memcpy ().

A loop of Imw.bim rb5,[ra5],rb5and smw.bim rb5, [ra5], rb5 takes care of most content
except the remaining bytes which cannot be handled with a word. Compiler must handle the
“packed” structure this way since the only other way is to do it byte by byte. Here “packed”
means that member fields of the structure may not be aligned. In contrast, fields of a default
(non-packed) structure are aligned based on their types (namely, word field is aligned on word
boundary; half word field is aligned on half word boundary and so forth).

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 22
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

4.3. Endianness

Andes supports both big and little endian data storage although instructions only use big endian.
Here are two different.ways.to.support it:
1. static setting on[yl OS$ finds the setting when loading ELF image and properly sets the
configuratien in system register.
dynami¢.setting —instruction SETEND.B can be used to switch user space programs to
big endian mode and SETEND . L to switch the programs to little endian mode. Once

switched to different data endianness, all data access will be interpreted based on the
new endianness.

I
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 23
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éuﬂQ_OEGsv

5.Pseudo-ops

5.1. List of Pseudo-ops

5.1.1. GNU DefaultPsetido—‘ops Supporting Sections

-data subsec for data section.

Default of subsec is 0, which is created automatically.

-text subsec for code section.
Default of subsec is 0, which is created automatically.

-section for user defined sections.

5.1.2. Andes Pseudo-ops Supporting Sections

.sdata_d for double-word sized (8-byte) small data items.
.sdata_w for word sized (4-byte) small data items.
.sdata_h for half-word sized (2-byte) small data items.
.sdata_b for byte sized small data items.

.sbss_d for double-word sized (8-byte) small data items.
.sbss w for word sized (4-byte) small data items.

.sbss h for half-word sized (2-byte) small data items.
.sbss b for byte sized small data items.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 24
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éuﬂQ_OEGsv

5.1.3. GNU Default Pseudo-ops Supporting ELF

-align type,fill,max for alignment.

type defines power-of-2 alignment.

for example, type=2 gives alignment to word (4-byte) aligned
boundary.

If Fill is not specified, O will be filled for data sections and nop

or nop16 will be filled for code sections.

.ascil for string constant.

.asciz for zero-terminated string constant.
-byte for byte data.

-2byte for 2-byte data. (alignment is not forced)
-4byte for 4-byte data. (alignment is not forced)
.8byte for 8-byte data. (alignment is not forced)
-double for double precision floating data.
-eject for page break in listings.

.else for conditional assembly.

-elseif for conditional assembly.

-end for terminating assembly.

-endm for terminating macro expansion.

-endr for terminating iterative assembly.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 25

Andes Programming Guide for ISA V3

ANDES

TECHNOLOGY
-endfunc for terminating a function.
.endif for conditional assembly.
-equ symbol ,eXpl’deeﬁning symbol to value expr.
-equiv symbol jexpr ‘same as .equ except duplicate is an error.
} r
-err fer-sighaling assembling error.
-error string for signaling assembling error.
-exitm for exiting macro expansion.
-extern symbol ignored - only for programming discipline.
-fail expr for generating error (expr<500) or warning.
-File string for starting new logical file.
-Fill rept,size,value for filling data chunk.
-float expr for single precision floating data.
-func symbol, label for issuing debugging information.
-global symbol for exporting symbol.
-globl symbol same as .global.
-hidden names for changing visibility of names.
-hword expr for half-word sized data.
.ident for tagging.
1T expr for conditional assembly.
- ifdef symbol for conditional assembly.
Ele information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, Page 26
produced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY
-ifc strl,str2 for conditional assembly.
-ifeq expr for conditional assembly.

.ifegs strl,strl2ea_foreonditional assembly.

-ifge expr 7 fdr conditional assembly.
DAalaacc

-ifgt expr ° for-conditional assembly.
-ifle expr for conditional assembly.
-Iflt expr for conditional assembly.
-.ifnc strl,str2 for conditional assembly.
-ifndef symbol for conditional assembly.
.ifnotdef symbol same as i fndef.

-ifne expr for conditional assembly.
-ifnes strl,str2 for conditional assembly.

-incbin file,skip,count for including binary file.

-include file for including source file.

-int expr for integer sized data.
-internal names for changing visibility of names.
-irp symbol,values for starting iterative assembly.
-list for generating listings.

-long expr for integer sized data.

-macro name,params for defining macros.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 27

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY
-nolist for stopping generating listings.
-0octa expr for 16-byte sized data.

-org expr, Fill e _formaqving location counter forward.

-previous for swapping ELF sections.
| ‘
-popsection | fer-popping ELF sections.
-print string for printing string in listings.
-protected names for changing visibility of names.
-psize line,col for defining page size of listings.
-purgem name for purging the macro definition of name.
-pushsection for pushing the current section (and subsection) onto the top of
name, subsec

the section stack and replacing them with name and subsection.

-quad expr for 8-byte sized data.

-rept count for starting iterative assembly.
-sbttl string for printing subtitle line in listings.
-set symbol,expr for defining symbol to value expr.
-short expr for word sized data.

-single expr for single precision floating data.
-size symbol,expr for specifying size of a symbol.
-slebl128 expr for SLEB128 data.

-skip size,fill for size-byte data chunk.

Page 28

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY
.space size,Till same as .skip.
-string string same as .asciz

-Struct expr _for-switching to absolute section.

-subsection sybsec for swapping current subsection to subsec.
D NCC
-title string - for-printing title line in listings.
-type name,desc for defining type of the symbol.
-uleb128 expr for ULEB128 data.
-version string for creating . note section content.
-vtable_entry for finding/creating a symbol table and creating a
table,offset

VTABLE_ENTRY relocation with an addend of offset.

-vtable_inherit for finding the symbol child and finding/creating the symbol
child,parents parent and then creating a VTABLE_INHERIT relocation for the

parent whose addend is the value of the child symbol.
-warning string for printing warning in listings.

-word expr for word sized data.

Please note that .hword, .half, and .short are referring to 16-bit data; . int, . long,

and -word are referring to 32-bit data; . quad is for 64-bit data; and -octa is for 128-bit data.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 29
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éuﬂQ_OEGsv

5.1.4. Andes Pseudo-ops Supporting ELF

-half for half-word sized (2-byte) data.

-word . forword sized (4-byte) data.

-dword for double-word sized (8-byte) data.

-qword for quadruple-word sized (16-byte) data.

-off_l6bit to start generating only 32-bit instructions.

.restore_l6bit to restore a setting of starting/stopping generating only 32-bit

instructions.

-pic for generating PIC code. This must appear before the first

assembly instruction. (first assembly line preferred)

-debugsym for debugging symbols.
-little for setting little endian data storage.
-big for setting big endian data storage.

5.1.5. Data Declaration Pseudo-ops

-half and .hword: forced 2-byte alignment.

-int, _float, .long, .single, forced 4-byte alignment.

and .word:
-double and .dword: forced 8-byte alignment.
-qword: forced 16-byte alignment.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 30
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3

ANDES

TECHNOLOGY
If you do not want forced alignments, use
-dc.h or .2byte for .half and .hword.
-dc, .dc.I, and .dc.wor .4byte for .int, .long, and .word.
-dc.s or .4byte for .float and .single.
-dc.d or .8byte|[\Z I d S for .double.
-dc.x for extended (12-byte) floating number.
5.1.6. Space Declaration Pseudo-ops
.dcb, .dcb.d, .dcb.h,dcb.1,dcb.s, dcb.w, and .dcb.x.
.ds, .ds.d, .ds.h, .ds.I, ds.s,and .ds.w.
.space.
.skip.
.Zero.
-Fill —will fill the data area with specified fill value.
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 31
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 émgggf

6. Pseudo-instructions

In addition to hardware-instructions;there are many software instructions defined to make
assembly programming much easier. These are pseudo-instructions. This chapter makes a
detailed list of pseuo‘io—ifn‘s’trycq?ns alohg with descriptions.

A

NOTICE:
While some pseudo-instructions are reserved for internal processing only, some dimmed in
this chapter are deprecated and not recommended. For a summary of deprecated

pseudo-instructions and reasons for deprecation, please refer to Table 3.

6.1. List of Pseudo-instructions

1. load 32-bit value/address
Ii rt5,imm_32 loads 32-bit integer into register rt5.

sethi rt5,hi20(imm_32) andthenori rt5,
rt5, 1o12(imm_32)

la rt5,var loads 32-bit address of var into register rt5.

sethi rt5,hi20(var) andthenori rt5,rt5,lo012(var)

2. load/store variables
I.{bhw} rt5,var loads value of var into register rt5.

sethi $ta,hi20(var) and then I{bhw}i
res5, [$ta+lol2(var)]

I.{bh}s rt5,var loads value of var into register rt5.

sethi $ta,hi20(var) and then I{bh}si
rt5, [$ta+lol2(var)]

loads value of var into register rt5 and increments $ta by
amount inc.
la $ta,var and then I{bhw}i.bi rt5,[$ta],inc

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 32
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

continues loading value of var into register rt5 and
increments $ta by amount inc.

1{bhw}i.bi rt5,[$ta],inc.

g e TTE T oads value of var into register rt5 and increments $ta by
| C amount inc.

ta $ta,var and then I{bh}si.bi rt5,[$ta],inc

continues loading value of var into register rt5 and
increments $ta by amount inc.
I{bh}si.bi rt5,[$ta],inc.

s.{bhw} rt5,var stores register rt5 to var.

sethi $ta,hi20(var) and then s{bhw}i
rt5, [$ta+lol2(var)]

stores register rt5 to var and increments $ta by amount inc.
la $ta,var and then s{bhw}i.bi rt5,[$ta],inc

continues storing register rt5 to var and increments $ta by
amount inc.

s{bhw}i.bi rt5,[$ta],inc.

For 64-bit extension, the {Is}.ws{p} and {Is}.d{p} are defined similarly.

3. negation
not rt5,rab alias of nor rt5,ra5,ra5

neg rt5,rab

alias of subri rt5,ra5,0

4. branch to label

br rb5 alias of jr rbs
depending on how it is assembled. It is translated into “jr5
rb5” or “jr rb5”

b label

branch to label.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Page 33

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY

bge{s} rt5,ra5, label

bgt{s} rt5, rabslabel

blt{s} rt5,ra5, label

ble{s} rt5,ra5, label

depending on how it is assembled. It is translated into “j8
label”, “j label”, or “la $ta,label; br $ta”

compares the unsigned (signed) value of rt5 and that of ra5.
If the value of rt5 is greater than or equal to that of ra5, jump
to label.

compares the unsigned (signed) value of rt5 and that of ra5.
If the value of rt5 is greater than that of ra5, jump to label.

compares the unsigned (signed) value of rt5 and that of ra5.

If the value of rt5 is less than that of ra5, jump to label.

compares the unsigned (signed) value of rt5 and that of ra5.
If the value of rt5 is less than or equal to that of ra5, jump to

label.

is a hardware instruction. Please refer to AndeStar Instruction

Set Architecture Manual.

is a hardware instruction. Please refer to AndeStar Instruction
Set Architecture Manual.

is a hardware instruction. Please refer to AndeStar Instruction

Set Architecture Manual.

is a hardware instruction. Please refer to AndeStar Instruction

Set Architecture Manual.

is a hardware instruction. Please refer to AndeStar Instruction

Set Architecture Manual.

is a hardware instruction. Please refer to AndeStar Instruction
Set Architecture Manual.

is a hardware instruction. Please refer to AndeStar Instruction

Set Architecture Manual.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Page 34

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 émgggf

is a hardware instruction. Please refer to AndeStar Instruction

Set Architecture Manual.

Note: Since there.are-hardware jnstruction and but no bge{s}, bgt{s}, ble{s},
and blt{s} tha mi;}sing ones are pseudo-code instructions. The implementation will

then getwider range. That s, and have only 15-bit range but others (:
A\w) ol @ —

A1 & Yt aid) have 17-bit range.

S

5. branch and link to function name
bral rb5 alias of jral br5s

depending on how it is assembled. It is translated into

‘jrals
rb5” or “jral rb5”.

bal fname depending on how it is assembled. It is translated into “jal

fname” or “la $ta,fname; bral $ta”.

call fname call function fname

same as “bal fname”.

is a hardware instruction. Please refer to AndeStar Instruction
Set Architecture Manual.

is a hardware instruction. Please refer to AndeStar Instruction

Set Architecture Manual.

6. move

move rt5,rab5 for 16-bit, it ismov55 rt5,ra5
for no 16-bit, itisori rt5,ra5,0

move rt5,var sameas l.w rt5,var

move rt5,imm_32 sameas li rt5,imm 32

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 35

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY
7. push/pop
pushm ra5,rb5 pushes the contents of registers from ra5 to rb5 into stack.
push ras pushes the content of register ra5 into stack. (same as pushm
ras,rab)

pushes the value of double-word variable var into stack.
pushesthe value of word variable var into stack.
pushes the value of half-word variable var into stack.
pushes the value of byte variable var into stack.
pushes the 32-bit address of variable var into stack.
pushes the 32-bit immediate value into stack.
popm ra5, rb5 poppes top of stack values into registers ra5 to rb5.
pop rts5 poppes top of stack value into register. (same as popm rt5, rt5)

poppes the value of double-word variable var from stack using the
register ra5 as the second scratch register. (the first scratch register
is $ta)

poppes the value of word variable var from stack using the register
rabs.

poppes the value of half-word variable var from stack using the
register ras.

poppes the value of byte variable var from stack using the register
rabs.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 36
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 émgggf

6.1.1. Deprecated Pseudo-instructions

The table below lists deprecated pseudo-instructions for quick reference.

Table 3. Deprecated Pseudo-instructions
~1 =

\
Deprecated]
Category=y . | - — }= -~ . . Reasons for Deprecation

a\=l sl — | Pseudo-instructions

A

1.{bhw}p rt5,var,inc
1. {bhw}pc rt5,inc
I.{bh}sp rt5,var,inc These instructions must depend on
1.{bh}spc rt5,inc $ri5.

s.{bhw}p rt5,var,inc

load/store variables

s.{bhw}pc rt5,inc

beq rt5,ra5, label
beqz rt5, label

bne rt5,ra5, label
bnez rt5, label These instructions can be replaced
branch to label
bgez rt5, label by identical hardware instructions.
bgtz rt5, label
bltz rt5, label

blez rt5, label

.) bgezal rt5,fname These instructions can be replaced
branch and link to function name))) .
bltzal rt5,fname by identical hardware instructions.

push.d var
push.w var
push_h var
push.b var
The functionalities to push/pop
pusha var)
push/pop from/to variables are not supported
pushi imm_32
anymore.
pop.d var, rab
pop.w var, ra5
pop.h var, rab5

pop.b var, rab

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 37
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

6.2. Built-in Function Operators

The following function operators can be used in any assembly instructions:
1. hi20(var)-is-the-high.20-bit of address of var.

2. lol2(var) is tHeTow ﬂZ;bit of address of var.

3. sda(var) is;the 15-bit signed offset of var into small data area.
N\CICdoC

-
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,

reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.
Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 38

Andes Programming Guide for ISA V3 éﬂggﬁ,

7.Macros

7.1. Create/Macros:in-Assembly Code

When writing assernbly code you.can define macros to generate assembly outputs. This is an
efficient way to repeat S|m|Iar statements or simplify varying syntax for complicated conditions.
For example, the below definition specifies a macro “sum” to put a sequence of numbers into
memory:

.macro sum from,to

.long \from
- 1T \to-\from
m “"(\from+1)",\to
.endif
.endm

With that definition, “sum 0,5” is equivalent to this assembly code fragment:
.long O
.long 1
.long 2
.long 3
.long 4
.long 5

Another example provided below shows how a macro is used to simplify varied syntax for
different conditions
.macro load_imm rt5, Imm32
0F ((\Nimm32 <= OX7FFFF) && (\imm32 >= -0x80000))
movi \rt5,\imm32
.elseif (\imm32 & 0xO00000fff == 0x0)
sethi \rt5,hi20(\imm32)
.else
sethi \rt5,hi20(\imm32)
ori \rt5,\rt5, 1012(\imm32)
.endif
.endm

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 39
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂgisv

With such definition, no matter what range the immediate value is, you just need to write the

“load_imm” macro and it will be expanded as appropriate instructions:

Macro Assembly Code
load _imm $r3,0x55 movi $r3,0x55
load _imm $r3,0x12345000 sethi $r3,0x12345
load_imm $r3, 0x#2845999 sethi $r3,0x12345 + ori $r3,%$r3,0x999

7.2.

Assembler Directives for Macros

The directives .macro and .endm allow you to define macros. The following descriptions give the

basic usages. For more details and other directives, please refer to GNU Assembly Manual Using

as.

-macro macname

-macro /machname macargs - ..

-endm

Begin the definition of a macro called macname. If your macro definition requires
arguments, specify their names after the macro name, separated by commas or spaces.
You can supply a default value for any macro argument by following the name with
“=defIt’. For example, these are valid .macro statements:
B _macro comm

Begin the definition of a macro called comm, which takes no arguments.
® _macro plusl p, pl
B _macro plusl p pl

Either statement begins the definition of a macro called plus1, which takes two
arguments; if you want to use arguments within the macro definition, you have to use
“\” character as prefix. In this case, use “\p” or “\p1” to evaluate the arguments.

B _macro reserve_str pl=0 p2
Begin the definition of a macro called reserve_str, with two arguments. The first
argument has a default value, but not the second. After the definition is complete, you
can call the macro either as “reserve_str a,t’ (with “\p1” evaluating to aand “\p2”
evaluating to b), or as “reserve_str ,b” (with “\p1” evaluating as the default, in this
case “0”, and “\p2” evaluating to b).

Mark the end of a macro definition.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 40
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂgisv

8. Application Binary Interface (ABI)

The Andes architegtureABt-defines the interface for compiled programs and assembled
programs running on.Andes architecture to work jointly. The purpose of Andes architecture ABI
is to deliver high performance-and binary compatibility. Section 8.1 describes the used data
types in programming-and-how.they.are presented on Andes architecture. Section 8.2 gives the

details of two types in Andes ABI.

8.1. Data Types

8.1.1. Byte Ordering

The byte ordering defines how the bytes that make up multi-byte data type are ordered in
memory. Andes architecture ABI supports both little-endian and big-endian byte ordering.
B Little-endian: The least significant byte of a data is stored at the lowest memory address.

B Big-endian: The least significant byte of a data is stored at the highest memory address.

8.1.2. Primitive Data Types

Table 4. Size and Byte Alignment of Primitive Data Types

Size Alignment
Class Machine Type
(in Byte) (in Byte)
Unsigned byte 1 1
Signed byte 1 1
Unsigned half word 2 2
Signed half word 2 2
Integer
Unsigned word 4 4
Signed word 4 4
Unsigned double word 8 8
Signed double word 8 8

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, Page 41

reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.
Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂgisv

Size Alignment
Class Machine Type
(in Byte) (in Byte)
Single precision
4 4
(IEEE,754)
Floating Point
Double precision
8 8
(IEEE 754)
Instruction Pointer 4 4
Pointer
Data Pointer 4 4

8.1.3. Composite Data Types

Composite Data Types is a collection of primitive data types and other composite data types that
can be used to construct a program.

8.1.3.1 Array Type

Array Type is a sequence of homogenous data elements (i.e. of the same primitive data
type). The alignment of an array is determined by the alignment of its elements’ data type.
The size of an array is the multiplication of the size of its data type and the number of its
elements.

8.1.3.2 Aggregate and Union Type

An aggregate is a data type that data elements are laid out sequentially in memory. A union

is a data type that stores each of its elements at the same memory address at different
times.

The alignment of an aggregate or a union is equal to the alignment of its most-aligned
component. The size of an aggregate is the smallest multiple of its alignment that is
sufficient to hold all of its elements when they are laid out. The size of a union is the

smallest multiple of its alignment that is sufficient to hold the union’s largest element.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 42
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 é,ﬂgisv

8.1.3.3 Bit-field Type

A bit-field is a member of an aggregate or union which defines an integral object with
specified of bits. The layout of bit-fields within an aggregate is defined by the appropriate
language binding-When-there-ate unused portions of such a member that are sufficient for
the following member to.start at its natural alignment, the following member can use the

unallocated partions.

8.1.4. C Language Mapping of Andes Platform

Table 5. Mapping of C Primitive Data Types

C/C++ Type Machine Type
[singed] char Signed byte
unsigned char Unsigned byte
[signed] short Signed half word
unsigned short Unsigned half word
[signed] int Signed word
unsigned int Unsigned word
[signed] long Signed word
unsigned long Unsigned word
[signed] long long Signed double word
unsigned long long Unsigned double word
size t Unsigned word
float Single precision (IEEE 754)
double Double precision (IEEE 754)
long double Double precision (IEEE 754)
float _Complex Two Single precision (IEEE 754)
double _Complex Two Double precision (IEEE 754)
long double _Complex Two Double precision (IEEE 754)

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 43
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 é,ﬂgisv

8.2. Calling Convention

For code generation efficiency, Andes introduces two ABI types: ABI2 and ABI2FP+. The ABIZ2 is
the convention for integer.toolchains, which uses General Purpose Registers (GPRs) for
computations on all primitivetypes. Based on ABI2, ABI2FP+ is provided for floating-point
toolchains, in whichjqrogrammers have extra Floating Point Registers (FPRs) and more
instructions to dofloating-point computation. Please see the following sections for
characteristics of the two ABI types.

8.2.1. ABI2 (for v3, v3j and v3m Toolchains)

8.2.1.1 Registers

There are 32 32-bit General Purpose Registers (GPRs) for Andes instruction set
architecture. Basically they are classified into caller-saved and callee-saved registers. The
following table lists the Andes GPRs commented with the ABI2 usage convention.

Table 6. Andes GPRs with ABI Usage Convention

Register Synonym Comments
$ro $a0 Argument / Return / Saved by caller
$rl $al Argument / Return / Saved by caller
$r2 $a2 Argument / Saved by caller
$r3 $a3 Argument / Saved by caller
$r4a $a4 Argument / Saved by caller
$r5 $a5 Argument / Saved by caller
$r6 $s0 Saved by callee
$r7 $s1 Saved by callee
$r8 $s2 Saved by callee
$r9 $s3 Saved by callee
$rio $s4 Saved by callee
$ril $s5 Saved by callee

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 44
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3

ANDES

TECHMNOLOGY

Register Synonym Comments
$ri2 $s6 Saved by callee
$ri3 $s7 Saved by callee

%14 . $s8 Saved by callee
$r15» - $ta Temporary register for assembler

; ;$/ri'6 \ - SFtO Trampoline register / Saved by caller

$ri7 $tl Saved by caller
$ris8 $t2 Saved by caller
$ri9 $t3 Saved by caller
$r20 $t4 Saved by caller
$ra21 $t5 Saved by caller
$r22 $t6 Saved by caller
$r23 $t7 Saved by caller
$ra4 $t8 Saved by caller
$ra25 $t9 Saved by caller
$r26 $p0 Saved by caller
$ra27 $pl Saved by caller
$r28 $fp Frame pointer / Saved by callee
$r29 $gp Global pointer / Saved by callee
$r30 $lp Link pointer / Saved by callee
$r3l $sp Stack pointer

As commented in the table, some registers are also taken for special usage, such as passing

argument or being stack frame pointer. They are summarized below and will be described

in subsequent sections:

Argument Passing: $ro~$r5.
Return Value: $ro~$ri.

Temporary Register: $ri5. This is reserved for assembler instruction expansion.

Trampoline Register: $ri6. This is used as static chain register for nested function.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 45

Andes Programming Guide for ISA V3

ANDES

TECHMNOLOGY

Global Pointer: $r29. This is used to access small data area.
Link Pointer: $r30. This is to save return address.

Stack Pointer: $r31. This.is used for stack frame adjustment.

Caller-saved and callee-saved registers are as follows:
B Caller-saved'registers: $r0=$r5, $r16~$r27.

B Callee-saved registers: $r6~$ri10, $ril1~$ri4, $r28, $r29, $r30.

8.2.1.2 Stack Frame

Frame Pointer: $r28. This could be used for stack frame adjustment.

Stack frame is very important during the function invocation. Whenever caller invokes

callee, the return address is automatically saved in $1p register, and then a corresponding

stack frame is created in memory to store local variables, spill registers, and pass

arguments. The stack is full-descending and each stack frame of a function is held by frame

pointer ($fp) and stack pointer ($sp) with 8-byte alignment. Figure 1 below exemplifies

such a scenario:

int foo(int, int);
int bar():

int main{()

{
int r;
r = foo (77, 88);
return r;

}

int foo(int x, int y)
{
int =;
z = bar();
Z=x+y + =
return z;

}

int bar()
{

return 99;

}

High Address

main()

$fp —>

foo() I

$sp—>

Low Address

Figure 1. ABI2 Stack Frame Scenario

&

$sp

<« 5fp

I bar()

+——3§sp

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 46
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3

ANDES

TECHMNOLOGY

Every stack frame is composed of 4 blocks: callee-saved area, local variables, duplicate

incoming arguments, and outgoing arguments. Each block is also 8-byte alignment, so

padding bytes may be needed. Note that the padding bytes in outgoing arguments block

are in differe

ming to C language standards. See Figure 2 for the memory

layout of th e@lﬁﬁ@ilali an ABI2 stack frame.

|‘ callee-saved

PADDING if necessary

local variables

PADDING if necessary

duplicate
incoming
arguments

PADDING if necessary

PADDING if necessary

outgoing

arguments

Callee-saved area:

® 3r6~$r10, $r11~$r14, $fp, $gp, $lp
® May be unnecessary under optimization.

Local variables area:
® Local variables
® Spilling variables
® May be unnecessary under optimization.

Duplicate incoming arguments:
® Duplicate values passed by registers.
® May be unnecessary under optimization.

Outgoing arguments:
® The outgoing arguments need to be placed in
reverse order.
® May be unnecessary if there is no outgoing
arguments that are placed on stack.

Low Address

Figure 2. ABI2 Stack Frame Layout

Conceptually, function prologue and epilogue are in charge of stack frame construction and

destruction respectively. The register $sp will be adjusted to reserve a space for blocks and

the register $1p will be used to return to caller after callee is finished. If the compiler

option -fno-omit-frame-pointer is applied, the register $fp will also be involved in

stack frame creation to record the original $sp position.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 47

Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

The followings illustrate the works in prologue and epilogue, with the option
-fno-omit-frame-pointer applied to show the detailed stack frame information:
B Prologue
1. Push callee-saved registers into stack. The caller’s frame pointer ($fp) and return
address ($1p)are Plso pushed if necessary.
Set frame painter ($fp) to the base of current stack frame.

Calculate réquired size; and then adjust stack pointer ($sp) to the bottom of

current stack frame.
Before function call Push callee-saved registers Setup new frame pointer Adjust stack pointer
High <«—SEfp High <«—Sfp High High
Caller's Caller's Caller's Caller's
stack frame stack frame stack frame stack frame
+«—S$sp «—§F «—S5F
$fp, $ap, $lp $fp, $ap, $ip F $fp, $ap, Slp F
$ri1~$r14 $ri1-~-$r14 $r11-~%$r14
$r6~$r10 $sp $r6~$r10 $sp $r6~$r10
Local
variables and
outgoing
arguments
«—5$sp
Low Low Low Low

Figure 3. Function Prologue for Stack Frame Construction

B Epilogue
1. Adjust stack pointer back to the location where callee-saved registers are going to
be popped.
Pop callee-saved registers from stack to restore their content.
Use link pointer ($1p) to return to caller.

Before entering epilogue Adjust stack pointer Pop registers and return
High High High «—5fp
Caller's Caller's Caller's
stack frame stack frame stack frame
«—5E «—5ET +«—5s
$tp, $gp, $ip P $fp, $gp, $lp $p F
$r11~$r14 $r11~$r14
$r6~$r10 $r6~$r10
+—$sp
Local
variables and
outgoing
arguments
+«—$sp
Low Low Low

Figure 4. Function Epilogue for Stack Frame Destruction

I
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 48
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggé

8.2.1.3 Argument Passing and Return

Arguments are passed in GPRs and stack. The space of stacked arguments, which is the
outgoing arguments block of a stack frame, must be allocated by caller. The argument
passing strategy-includes-the-fellowing rules:

B GPRs $r0~$r5 are usedto pass arguments.

B If the argument requires.8-byte alignment, assign the argument to the next even
register number.

B If the argument is a primitive type smaller than 4 bytes, it will be zero- or sign-extended
to 4 bytes.

B If GPRs $r0~$r5 are not sufficient to hold all arguments, the remaining ones will be
passed in the outgoing arguments block of caller’s stack frame. Then callee is able to
retrieve them by using $fp or $sp with offset calculation.

B |f the argument is a composite type with a size that is not 4-byte aligned, it will be
rounded up to the closest multiple of 4 bytes.

B Anargument that is not a primitive type can be assigned to both registers and the stack.
In this case, the first part of the argument is copied to the GPRs and the rest part of it to
the stack.

The function return value is determined by the type of the result:
B If the result is a primitive type,
1. For primitive type smaller than 4 bytes: the return value is zero- or sign-extended to
4 bytes and returned in $ro.
2. For 4-byte primitive type, the return value is returned in $ro.
3. For 8-byte primitive type, the return value is returned in $r0 and $r1l.
B If the result is a composite type,
1. For the size that is not larger than 8 bytes, the return value follows the same rules
as when the result is a primitive type.
2. For the size that is larger than 8 bytes or undetermined by caller and callee, the
return value must be returned at a memory reference that is passed as an extra
argument when the function is called. In that case, the address for the result will be

placed in $ro0 and the first argument will be passed in $ri.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 49
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3

ANDES

TECHMNOLOGY

Here is an example of how arguments are passed and how value is returned:

$ro sri

{
double™T;
r=cl+ I+ i+ d
return r; .
} ‘:".-‘."._ " * 1 0‘
L $ro/ Srl $r2

¥

double func_sum (char c, long long II, float f, int i, double d)

o

¥

kY

$r3 S$r4 S$r5 [$fp+0] [$fp+4]

Note that for a function with variable size (variadic function), caller is able to pass

arguments like a normal function using GPRs and stack; callee is in charge of pushing

argument registers into stack so that all the nameless arguments appear to have been

passed consecutively in the memory for accessing. The callee must create an extra block,

which is also 8-byte alignment, to store nameless arguments that are passed via GPRs. An

example is given in Figure 7 in the next section.

8.2.1.4 Samples of ABI2

In this section, some C code fragments are presented as examples to show the memory

layout generated by compiler. These samples are all compiled with the compiler option

“-00 -fno-omit-frame-pointer”.

B A simple case of a function stack frame: It only contains blocks of callee-saved area and

local variables. There is no need to duplicate incoming arguments or reserve a block for

outgoing arguments.

int main()

{
inta, b, c;
a = 66;
b=77;
c = 88;
c=a+ b;
return c;

}

High

$fp-12 —»
$fp-16 —»
$fp-20 —»

Low

L
Hil

54

- 5fp

66

77

n|o|w

88

«— $sSPp

Figure 5. ABI2 Sample of Simple Function Stack Frame

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 50

- .
Andes Programming Guide for ISA V3 émgggf

B A case of calling a function with arguments: Figure 6 shows the necessary blocks of

each stack frame.

High
int funci(int x, int
e |{n unc1(intx, in y)\ $x0 = 55 . « S5/
lemms a P _ '
Xnta, b:cﬂ - Srl = 66 §fE-'-')
’ result main
| a=77; $fp’ -8 — v
}’/ ;bhﬁal’ 1Se] | T 2 fp’ 4—$fp“
. CEE++FXAY
a =
return c; $fp-12 —*|— = 88 func1
} Sfp-16 — c=atb+x+y
B $fp-20 —
int main() ﬂ—r
{ $£p-28 —>|——— 2
int result; $fp-32 —» L= 2rl 1, sspV
result = func1(55, 66);
return 0;
}
Low

Figure 6. ABI2 Sample of Calling a Function with Arguments

B A case of variadic function: The nameless arguments are pushed into stack by callee.

High
$1lp A
#include <stdarg.h> L__Sfo |
$r0 = size main
int func(int size, ...) $rl = 1 Ll
o $r3 = 3 8
inti; $rda = 4 7
intsum=0; $¥5 = 5 6 v
va_listap; S 8y5 =5 777 'Y
va_start (ap, size); i Srd =4 L :
for (i=0;i <size;i++) Useva_arg()to 1 $r3 = 3 &
sum+=va_arg (ap, int); access arguments o :rf = f n
: rl = B :
return sum; : ffunc
) Sfp «—Sfp A i
int main() - :
{ s:.-:.m func |
return func(10,1,2,3,4,5,6,7,8,9,10); ap i
}
size = Sr
« $sp ¥ v
Low
Figure 7. ABI2 Sample of Calling a Variadic Function
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 51
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

8.2.2. ABI2FP+ (for v3s and v3f Toolchains)
8.2.2.1 Registers

In addition to the GPRs usage in ABI2, there are extra Floating Pointer Registers (FPRS)

and instructions-for float/double,computation in floating-point toolchain. It is helpful to

generate more efficient code. The following table lists the usage of those FPRs under the
ABI2FP+ convengioh

Table 7. Andes FPRs with ABI Usage Convention

Register Comments
$fs0~$fsl
Argument / Return / Saved by caller
($1d0)
$fs2~$fs3
Argument / Saved by caller
($Fd1)
$Fs4~$fs5
Argument / Saved by caller
($1d2)
$Fs6~$fs21

Saved by callee
($fd3~$fd10)

$fs22~$fs31

Saved by caller
($fd11~$1fd15)

This table is incorporated with the GPRs table usage of ABI2 (Table 6). It is clear from
Table 7 that $Fs0~$fs1 are also used to return float/double value of a function.

As for caller-saved and callee-saved registers, they are listed below:
B Caller-saved registers: $fs0~$fs5, $Fs22~$fs31.
B Callee-saved registers: $fs6~$fs21.

I
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 52
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

! - -
TECHNOLOGY

Andes Programming Guide for ISA V3

8.2.2.2 Stack Frame

The stack frame scenario of ABI2FP+ is almost the same as ABI2 except that there will be
FPRs in callee-saved area. Therefore, some FPRs are considered to be pushed into stack in
the prologue and-their-contentwill be restored in the epilogue. The difference of stack
frame between'ABI2 and ABI2FB+ are illustrated in the figure below:

ABIl2 ABI2FP+
High Address High Address
fp . g fp g
$lp
Sgp
: Ip $fp
5%'3 $r11 -~ $r1d
$r1,1 N $r14 $r5 = $r1[}
$16 ~ Sr10 $fs6 ~ Gfs21
($fd3 ~ $fd10)
local variables local variables
duplicate duplicate
incoming incoming
arguments arguments
outgoing outgoing
arguments arguments
SpP sSp
Low Address Low Address

Figure 8. Stack Frame Comparison Between ABI2 and ABI2FP+

8.2.2.3 Argument Passing and Return

In ABI2FP+, arguments are passed in GPRs, FPRs, and stack. The rules of passing

arguments and return value are based on ABI2 strategy with some differences:

B Function arguments with floating-point primitive types such as “float” and “double”
will be passed in FPRs $fs0~$fs5; other primitive types are still passed in GPRs
$ro~$rb.

B |f the argument requires 8-byte alignment, assign the argument to the next even
register number. Both GPR and FPR argument passing follows such a rule.

B An argument must be passed entirely in registers or entirely pushed on the stack.

A function value of “float” will be returned in $fs0.

B A function value of “double” will be returned in $fs0~$fs1.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 53
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éuﬂQ_OEGsv

Here is an example of how arguments are passed under ABI2FP+:

double func_sum (char ¢, long long int Il, float f, int i, double d)
{

return-c+ -+ f+j+d:
} of o
int main ()
{

printf-("%fin"funczsum (1, 2, 3.0f, 4, 3.0));

return O; P .,

$ro $r1 $r2 $r3 $fs0 $r4 $fsl $fs2 3fs3

In addition to the rules above, there is also a major difference between ABI2 and ABI2FP+
in functions with variable size (variadic function). As FPRs are involved in passing
arguments, it makes complexity, low performance and large code size of dealing with GPRs
and FPRs against arguments order if callee is in charge of pushing argument registers into
stack. Therefore, in the ABI2FP+, all the nameless arguments must be stored in outgoing
arguments block of a stack frame by caller so that callee is able to access them via stack
easily.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 54
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂgisv

9. Andes Specifics

9.1. GetPC

For most V3-family toolchains, you can use the instruction “MFUSR rt5,PC” to move PC to the
specified general purpose'register €5, However, for v3m toolchains, you must get PC through
the general way “JAL 47, which stored the address of the next instruction into $Ip. While this
works fine, it does cause penalty on hardware branch prediction since it simply throws the whole
prediction off balance.

9.2. Andes Predefined Macros

To see the default values of Andes predefined macros for a particular toolchain or to check if a

feature is enabled as default, issue the following command:

$ nds32le-elf-gcc -E -dM - < /dev/null | grep NDS32

Predefined macros are very useful to determine which toolchain is used. The following lists the

macros defined for different toolchain settings or compilation flags:

Table 8. Andes Predefined Macros

Macro Name Description
__NDS32___
Defined on all Andes toolchains.
_ nds32__
_ NDS32_EB___ Defined if using big endian toolchains.
_ _NDS32_ EL___ Defined if using little endian toolchains.
__NDS32_ABI 2 Defined if using ABI 2.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 55
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGOY
Macro Name Description
__NDS32_ABI_2FP_PLUS Defined if using ABI2FP+.
_ NDS32_ISA V3 [AHrinl | Defined if using v3/v3j/v3s/v3f toolchains.
_NDSSZ_ISA_VSM_J \ = I 1S € ” Defined if using v3m toolchains.

Defined if using GCC with the option to use reduced-set registers for
_ NDS32_REDUCED_REGS___

register allocation (-mreduced-regs).

Defined if using GCC with the option to generate 16-bit instructions
__NDS32_16 BIT__

(-m16-bit).

Defined if using GCC with the option to generate conditional move
__NDS32_CMOV__

instructions (-mcmov).

Defined if using GCC with the small or medium code model option
_ NDS32_GP_DIRECT__

(—mcmodel=[smal Il [medium]).

Defined if using GCC with the option to specify the size of each
__NDS32_ISR_VECTOR_SIZE 4

interrupt vector as 4 bytes (-misr-vector-size=4).

Defined if using GCC with the option to specify the size of each
_ NDS32_ISR_VECTOR_SIZE_16__

interrupt vector as 16 bytes (-misr-vector-size=16).

Defined if using GCC with the option to generate performance
___NDS32_EXT_PERF__

extension instructions (-mext-perf).

Defined if using GCC with the option to generate performance
_ NDS32_EXT_PERF2___

extension version 2 instructions (-mext-per¥2).

Defined if using GCC with the option to generate string extension
___NDS32_EXT_STRING

instructions (-mext-string).

Defined if using GCC with the option to generate DSP extension
__NDS32_EXT_DSP___

instructions (-mext-dsp).

Defined if using GCC with the option to insert the hardware loop
_ NDS32_EXT_ZOL___

directive (-mext-zol).

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 56
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY

Macro Name

Description

__NDS32_EXT_FPU_SP__

Defined if using GCC with the option to generate single-precision

floating-point instructions (-mext-fpu-sp).

__NDS32_ExT_FpU pf)11

Defined if using GCC with the option to generate double-precision

floating-point instructions (-mext-fpu-dp).

|
Re
_ NDS32_EXT_FPUNEMA__

Defined if using GCC with the option to generate floating-point

multiply-accumulation instructions (-mext-fpu-fma).

__NDS32_EXT_FPU_CONFIG_O__

Defined if using GCC with the options to generate single-precision
floating-point instructions (-mext-fpu-sp) and to set the FPU
configuration value as O or 4 (-mconfig-fpu={0]4}). For details
about FPU configuration options, please refer to AndeStar

Instruction Set Architecture FPU Extension Manual.

__NDS32_EXT_FPU_CONFIG_1__

Defined if using GCC with the options to generate single-precision
floating-point instructions (-mext-fpu-sp) and to set the FPU
configuration value as 1 or 5 (-mconfig-fpu={1]|5}). For details
about FPU configuration options, please refer to AndeStar

Instruction Set Architecture FPU Extension Manual.

__NDS32_EXT_FPU_CONFIG_2__

Defined if using GCC with the options to generate single-precision
floating-point instructions (-mext-fpu-sp) and to set the FPU
configuration value as 2 or 6 (-mconfig-Tfpu={2]63}). For details
about FPU configuration options, please refer to AndeStar

Instruction Set Architecture FPU Extension Manual.

__NDS32_EXT_FPU_CONFIG_3__

Defined if using GCC with the options to generate single-precision
floating-point instructions (-mext-fpu-sp) and to set the FPU
configuration value as 3 or 7 (-mconfig-fpu={3|7}). For details
about FPU configuration options, please refer to AndeStar

Instruction Set Architecture FPU Extension Manual.

__NDS32_EXT_FPU_DOT_E__

Defined if using GCC with the options to generate single-precision
floating-point instructions (-mext-fpu-sp) and to set the FPU
configuration value as 4, 5, 6, or 7 (-mconfig-fpu={4]5]6| 7}).
For details about FPU configuration options, please refer to

AndeStar Instruction Set Architecture FPU Extension Manual.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 57

A o
Andes Programming Guide for ISA V3 NDES

TECHMNOLOGY

The following takes _ NDS32_EXT_PERF___ as an example to help you understand the usages of
Andes predefined macros:

#if (__NDS32_EXT_PERF_)

t#else

L1:
#endi T

I
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,

reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.
Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 58

Andes Programming Guide for ISA V3

ANDES

TECHMNOLOGY

9.2.1.

Deprecated Predefined Macros

The following macros, though still supported for backward compatibility, are NOT

recommended. They may be completely removed in the future:

7 Tablg 9. Obsolete Predefined Macros

| \
Macro.Name

Notes

NDS32_EB

Defined if using big endian toolchains.
___NDS32_EB
NDS32_EL

Defined if using little endian toolchains.
_ NDS32_EL
NDS32_ABI_2

Defined if using ABI 2.
__NDS32_ABI_2

NDS32_BASELINE_V3

___NDS32_BASELINE_V3

Defined if using v3/v3j/v3s/v3f toolchains.

NDS32_BASEL INE_V3M

__NDS32_BASELINE_V3M

Defined if using v3m toolchains.

NDS32_REDUCE_REGS
__NDS32_REDUCE_REGS

Defined if using GCC with the option to use reduced-set registers for

register allocation (-mreduced-regs).

NDS32_EXT_PERF __ NDS32_EXT_PERF

Defined if using GCC with the option to generate performance

extension instructions (-mext-perT).

NDS32_EXT_PERF2
__NDS32_EXT_PERF2

Defined if using GCC with the option to generate performance

extension version 2 instructions (-mext-per¥2).

NDS32_EXT_STRING

__NDS32_EXT_STRING

Defined if using GCC with the option to generate string extension

instructions (-mext-string).

NDS32_EXT_FPU_SP
__NDS32_EXT_FPU_SP

Defined if using GCC with the option to generate single-precision

floating-point instructions (-mext-fpu-sp).

NDS32_EXT_FPU_DP
__NDS32_EXT_FPU_DP

Defined if using GCC with the option to generate double-precision

floating-point instructions (-mext-fpu-dp).

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 59
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 é,ﬂgisv

9.3. Crno0.S

The file crt0.S, in startup demo projects of Andes BSP package, contains the following
AndesCore™-specific.components:

B the vector table forjinterrugtions (including exceptions and interrupts),

B the interruption.dispatch examples, and

B the low-level initializationfor Cprograms.

The vector table and interruption dispatch examples show the dispatch handling from assembly
code to C functions for interrupts, useful exceptions, and error exceptions. You can modify the
dispatch grouping, function names and the function definitions for your own needs. An example
of changing dispatch grouping is that if a program is not intended to use the syscall exception, its

handler can be changed from calling syscall_handler() to error_exception_handler().

In addition, crt0.S also invokes a predefined low-level initialization macro named nds32_init
for the C compiler to support AndesCore features. The macro is enclosed between “Begin of
do-not-modify” and “End of do-not-modify” after the symbol _start. We strongly
recommend that you do not touch the enclosed code sequence to ensure the proper

program execution.

Predefined in the toolchains, the nds32_init macro can be invoked in assembly code by
including <nds32_init. inc> file. This macro is used to do the necessary startup initialization
for the C program and AndesCore features. The following bullets explain the initialization code
segment in nds32_init macro, including the special code sequence, the symbols used and their

meanings:

B Symbol _I1TB_BASE_
The instruction sequence relating to _1TB_BASE_is to initialize the instruction table register
$1TB (User-Special Register USR #28) with the value of _1TB_BASE .

It is the base address of the instruction table used by ex9. it instruction. One usage of the
instruction table is as follows. When linker performs code size optimization, it automatically

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 60

Andes Programming Guide for ISA V3 éﬂgisv

assigns the value of _1TB_BASE_, fills the corresponding table with useful instructions, and
generates ex9.it.

B Symbol _SDA_BASE_
The instruction sequence relating to _SDA BASE_is to initialize the global data pointer
register $gp (r29) with the value of SDA BASE .

It is the address-in-the-middle-of-data sections. Linker places scalar data around it so that
they can be accessed efficiently by $gp-based load/store instructions and their addresses can
be calculated efficiently by $gp-based add instructions.

B Symbol _stack
The instruction sequence relating to _stack is to initialize the stack pointer register $sp
($r31) with the value of _stack. Since _stack is a common symbol used by GNU toolchains,
we follow its naming convention.

It is the starting address of the stack used by C compiler to pass function parameters, local
variables and return values. Linker obtains its value from the linker script. Since the stack
usually goes from high addresses to low addresses when doing function calls, the initial stack

address is normally set to the highest address of program data memory.

B FPU initialization
The instruction sequence is to initialize the FPU and coprocessor enable control register
$FUCOP_CTL and the floating-point control status register $FPCSR. It enables the

floating-point support with denormalized flush-to-zero mode for FPU-based toolchains.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 61
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

N
Andes Programming Guide for ISA V3 éﬂgggf

10. Andes C Language Extension for Interrupt Service Routine

(Not Supported-on-S801H)-
-1 2

Normally, programmers gan’t implement interrupt service routines in C language. This is
because the standard C Iénguage is not designed for this job and the design of C function
prologue and epilogue is not suitable for this task either. Unfortunately, implementing ISR in
assembly language is a tedious and error-prone work. To relieve your burden, Andes defines

three different syntaxes for system reset, interrupts and exceptions in C.

NOTE 1: Once Andes C language ISR is used, all ISR’s entry points should be defined by Andes C
language extension. Do not mix C language ISR with your assembly ISR unless you
really know how to do it.

NOTE 2: You need to set $IPC to $IPC +4 before returning from C-ISR syscall. That is, the

statement “ptr->ipc = ptr->ipc + 4” has to be added to your syscall function.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 62
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éuﬂQ_OEGsv

10.1. Syntax for System Reset Handler

Prototype:
void NDS32ATTR_RESET(‘‘<option Iist>") reset hdlr(void);
<option_list> contains-zere-or-more of the following separated by “;”
1. vectors=XXX
2. nmi_func=Y}¥
3. warm_furte=zz#

NOTE: The NDS32ATTR_RESET(*“..””) can be replaced by __attribute__((reset(*.””)))

macro. In this case, the prototype of system reset handler will be changed to —
void _ attribute ((reset(“<option list>"))) reset hdlr(void);

Functionality:

In Andes CPU core architecture, NMI, warm reset and cold reset share an interruption vector 0,
so special handling is necessary to distinguish one exception from another. Here Andes provides
a framework which can hide the low level interfacing detail of tedious assembly coding and let

you handle the real work in C language.

As soon as any of these exceptions occurs, the prologue of the reset handler generated by
compiler will detect the event and dispatch the control to specific handlers that you provide with
proper argument. Your handler will take over the control and do the specific job. When the job is
done, the handler can decide whether or not to return the control to the reset handler. When it
decides to return, an error code is used as the return value. This value can be 0 as OK or -1 as
fail. When the control goes back to the prologue of reset handler, it will either resume the
operation before exception or prepare to do cold reset depending on whether the return value

from the specific exception handler is 0 or -1.

Include File: nds32_isr.h

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 63
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- i
Andes Programming Guide for ISA V3 éﬂ&ﬁé

Input & Keyword:

reset_hdlr Name of your reset handler function

reset Keyword to signify that reset_hdlr is areset handler

vectors=XXX XXX.isthe total number of interruptions vectored entry point (Default: 16; 9
‘exc§pﬁcﬁ @ﬁj@ibte‘rrupt). This number is important since it is used to fill in
tl}eoléffgclf Qa%dlcgr if you don’t define handlers for some vectors. For detalils,
\\Ife§§€ eTer@()JAhﬂ Star System Privilege Architecture Version 3 Manual.

nmi_func=YYY YYY is the name of NMI handler. (Default: NULL)

warm_func=ZZZ 777 is the name of warm reset handler. (Default: NULL)

Note:

B A reset handler is mandatory in a system.

B Upon system reset, you need to put the whole system to a known state in order to use high
level language like C. C language expects the .data section, .bss section and stack pointer are
initialized, so global, static and auto variables can be used. This means the jobs to initialize
DRAM, copy data from ROM to .data section and zero out .bss section in DRAM. The
problem is how to initialize DRAM in C without using DRAM as temporarily storage. The
followings are some guidelines —

® No auto and global variable can be used before DRAM is initialized.

® No ordinary C code can be used to initialize DRAM.

® Only constants and registers can be used.

® Special C macros are designed using inline assembly to do this job. Please reference the
C ISR example in Andes Board Support Package for these C macros.

B nds32_init_mem(): the name of memory initialization function; called by 1st level reset
handler. You must implement this callback function if the memory in the target system needs
to be initialized by software. One of the examples of such memory is DRAM.

® Prototype: void __ attribute__ ((no_prologue)) _nds32_init_mem(void);

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 64
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éuﬂQ_OEGsv

Prototype:
int nmi_func(int *req ptr)

Functionality:

This is the handler that yot:provide to handle a NMI exception. When an NMI exception occurs,

all general purpose registers are preserved to a buffer in stack and the starting address of this
buffer is passed ta nmiFunc @stheinput.

NOTE: The address of nmi_func handler is stored at the “.nds32_nmih” section.

Input:

reg _ptr Pointer to buffer containing values of all GPRs. The data is arranged in
ascending order in the buffer based on register number. Sequence:
B Reduced Register Set (16 registers mode): rO-r10, r15, r28-r31
B Normal Register Set (32 registers mode): rO-r31

Return Value:
0 means OK to resume the work before NMI occurs.
-1 means fail and the prologue of reset handler will reset the system.

It is also OK to hold the control and never return to the reset handler.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 65
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 émgggf

Prototype:
int warm_func(int *reqg ptr)

Functionality:

This is the handler that youproT/iqe’ tohandle a warm reset exception. When a warm reset
exception occurs, all general purpOse registers are preserved to a buffer in stack and the starting
address of this bufferisjpassedtomarn func as the input.

NOTE: The address of warm_funchandler is stored at the “.nds32_wrh” section.

Input:

reg _ptr Pointer to buffer containing values of all GPRs. The data is arranged in
ascending order in the buffer based on register number. Sequence:
B Reduced Register Set (16 registers mode): rO-r10, r15, r28-r31
B Normal Register Set (32 registers mode): rO-r31

Return Value:
0 means OK to resume the work before warm reset occurs
-1 means fail and the control should reset the system

It is also OK to hold the control and never return to the reset handler.

NOTE:
The warm reset and NMI handlers are not mandatory. Please see the examples provided below
for format reference.
/* 8 interruptions; my nmi as the name of NMI handler and no warm boot handler
*/
/* The following forms are equivalent */
void NDS32ATTR_RESET(*“vectors=8;nmi_func=my_nmi ;NULL"")
my_reset_hdlr(void);
void NDS32ATTR_RESET(““vectors=8;nmi_func=my nmi’’)
my reset _hdlr(void);
void NDS32ATTR_RESET(*“nmi_func=my_nmi ;vectors=8")
my_reset_hdlr(void);

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 66
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- i
Andes Programming Guide for ISA V3 éﬂggé

/* 16 interruptions, no NMI and warm boot handler */
/* The following forms are equivalent */

void NDS32ATTR_RESET(*‘vectors=16") my_reset_hdlr(void);
void NDS32ATTR_RESET(**’) my_reset_hdlr(void);

void NDS32 — reset_hdlr(void);
Official
Release

#include <nds32_isr.h> /* always include this file for ISR */

10.1.1. Exampl

/*

my_reset() is a reset handler

Use my nmi() to handle NMI

Use my warmboot() to handle warm reset

To initiate memory, please implement the memory initiation function

“ nds32_init_mem()” mentioned earlier

*/

void NDS32ATTR_RESET(*“‘vectors=16;nmi_func=my_ nmi ;warm_func=my_warmboot)
my_reset(void);

void my_reset(void)

{

/* OK to use C statements now */

/* No global or static variables can be used yet */

/* Auto variables are OK to use now */

/* Initialize system registers here or do it later */

/* Initialize cache regs here so .data and .bss can be initialized faster
*/

_cpu_initQ;

/* Initialize .data and .bss sections here, so global and static can be used
later */
_c_initQ ;

/* OK to use global and static variables now */
/* Initialize cpu and peripheral here */
__soc_initQ);

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 67
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

A g N
Andes Programming Guide for ISA V3 NDES

TECHMNOLOGY

/* Ready to call main() */
main() ;

/* Call

ndler to handle warm
return

error recovery reset */
R@l@@&& NDS32_NUM_GPR) ;

int my NMI(int * pReg)
{
#ifdef BLUE_SCREEN

/* Show register values in blue screen */
save_crash_info(pReg, NDS32_NUM_GPR) ;

/> Never return */
while (1) ;
t#else

/* Save register values iIn storage, so we can retrieve it later */
save_crash_info(pReg, NDS32_NUM_GPR) ;

/* Can’t recover, return fail so reset handler will do a cold boot */
return 0 ;

#endi
}

I
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,

reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 68
Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

10.2. Syntax for Interrupt Handlers

Prototypes:
B Forsave_caller.regs

void NDS32ATTR_WSR(#1d=xxx/[;save_caller _regs;<is _nested>]")
intr_hdIr(int vid);

where save caller | regs and. <is nested> can be omitted.

save_caller_regs means system will help save caller registers before entering this

user-defined handler. Typical interrupt service routines should use this mode.

B Forsave_all _regs

void NDS32ATTR_ISR(“dd=xxx[;save_all regs;<is nested>]")
intr_hdIr(int vid, NDS32_CONTEXT *ptr);
where <is nested> can be omitted.

save_all_regs means system will help save all registers into stack before entering this

user-defined handler. This mode can be used for context-switching. The stack layout looks
like the following:

High Address

all GPRs
implementation-dependent Stack
registers growing
(e.g., floating point direction
registers)

NDS32 CONTEXT
P e

Low Address

NOTE: In both prototypes, NDS32ATTR_ISR(*“..””) can be replaced by
NDS32ATTR_INTERRUPT(*.””) or _ attribute ((interrupt(*.”))) macro.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 69
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éuﬂQ_OEGsv

Functionality:
An interrupt handler can take care of asynchronous events whether it is triggered by hardware or

software. When you implement an interrupt handler, you must decide if this handler should run

to completion without disturbance. If the handler allows other events to interrupt current job, it
Is said to be interruptible: Then, the next thing you must decide is when the handler will allow
this to happen. There are three cases that need different setting in hardware and Andes has
defined a parameter to controt‘them: Please see below for the usage. An experienced
programmer may decide to set the handler to not_nested and handle the interrupt level and

global interrupt (GIE) manually.

As an aside, if advanced users want to have full control of all registers, combination of critical

type interrupt and inline assembly can be used to achieve this purpose.

NOTE: The addresses of all user-defined 7ntr_hdlrhandlers are stored at the “.nds32_jmptbl”
section.

Include File: nds32_isr.h

typedef struct
{

int ipc;

int ipsw;
} NDS32_CONTEXT;

Input & Keyword:

intr_hdlr Name of an interrupt service routine (ISR)

vid Vector ID

ptr A pointer to NDS32_CONTEXT

interrupt Keyword to signify intr hdlIris an ISR

1d=xxx A series of vector ID separated by comma (“,”); 1D should be 0 to 63. This list

allows a handler to be shared by many vectors. At least one ID number is
required.

<is_nested> Setto nested, not_nested, ready nested or critical. It can be omitted.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 70
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- .
Andes Programming Guide for ISA V3 Q.HREQ

(Default: nested)
B nested means this ISR is interruptible.

B not nested means this ISR is not interruptible.

B__ready nested&neans this ISR is interruptible after PSW.GIE (global
Tnt?r‘?‘ppj: ﬁepal@le)‘ is set in the function body manually by

~calling _ nds32_| setgie_en(). Thisis to allow ISR to finish some short

Ralgase
\J triticat dﬂHe"b%fpre enabling interrupts.

B critical means thisis acritical (and usually short) handler. This ISR is
not interruptible. (Note: This handler MUST be a leaf function with no
child function called. In addition, the handler is advised to be put in a
separate C source file and compiled with “—mno-ifc” but no “—mext-zol”
to prevent IFC_LP, LB, LE, and LC registers from being corrupted in this

critical handler.).

10.2.1. Example

#include <nds32_isr.h>

/* Timer handler; shared by vector 0, 1 and 2; save caller registers;

interruptible */

/* The following forms are equivalent */

void NDS32ATTR_ISR("'1d=0,1,2;save_caller_regs;nested')
timer_hdlr(int vid);

void NDS32ATTR_ISR("'1d=0,1,2;nested;save_caller_regs')
timer_hdIr(int vid);

void NDS32ATTR_ISR("id=0,1,2")
timer_hdlr(int vid);

/* Default handler; shared by vector 4 and 5; save all registers; not

interruptible */

/* The following forms are equivalent */

void NDS32ATTR_ISR("'id=4,5;save_all_regs;not _nested")
default_hdlr(int vid, NDS32_CONTEXT *ptr);

void NDS32ATTR_ISR('1d=4,5;not_nested;save_all_regs')

default _hdlr(int vid, NDS32 CONTEXT *ptr);

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 71
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂgisv

10.3. Syntax for Exception Handlers

Prototype:

B Forsave_caller.regs

void NDS32ATTR EXCEPT (“ad=xxx[;save caller regs;<is nested>]")
excpt)hdlr(int vid);
where save caler | kegs and <is nested> can be omitted.

save_caller_regs means system will help save caller registers before entering this

user-defined handler. Typical interrupt service routines should use this mode.

B Forsave_all _regs

void NDS32ATTR_EXCEPT(“id=xxx[;save_all _regs;<is nested>]")
excpt hdlr(int vid, NDS32_ CONTEXT *ptr);
where <is nested> can be omitted.

save_all_regs means system will help save all registers into stack before entering this
user-defined handler. This mode can be used for context-switching. The stack layout looks
like the following:

High Address

all GPRs

implementation-dependent Stack

registers growing
(e.g., floating point direction
registers)

NDS32 CONTEXT
P e

Low Address

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 79
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- .
Andes Programming Guide for ISA V3 éﬂ&&g

NOTE: In both prototypes, NDS32ATTR_EXCEPT(*“..””) can be replaced by
NDS32ATTR_EXCEPTION(*..”) or __ attribute__((exception(*..””))) macro.

Functionality:

An exception hand/ler barﬁ tékg c}at}e»o;synchronous events, such as division by zero or unaligned
access, during the e>‘<,e/cqti n of §thvyare. When you implement an exception handler, you must
decide whether this hand erhHUld‘irgn to completion without disturbance. If the handler allows
other events to interrupt current job, it is said to be interruptible. Then, you must decide when
the handler allows this to happen. Just like interrupt handler, there is a parameter to control it
but exclude the usage of nested in the exception handler. Please see Section 10.3.1 for the usage.
An experienced programmer may decide to set the handler to not_nested and handle the

interrupt level and global interrupt (GIE) manually.

As an aside, if advanced users want to have full control of all registers, combination of critical
type interrupt and inline assembly can be used to achieve this purpose.

NOTE 1: The addresses of all user-defined excpt_hdlIrhandlers are stored at the
“.nds32_jmptbl” section.

NOTE 2: If a programmer needs to do the recovery, he or she should use the prototype for
save_all_regs. Upon the occurrence of an exception, the current state of execution is
saved in memory in struct NDS32_CONTEXT format. Then, a user-defined exception
handler is invoked. After the exception has been processed, there are 2 possible actions

to take by user-defined exception handler.

1. Skip the instruction that causes the exception: If it is System Call exception, the
user-defined exception handler should add "ptr->ipc = ptr->ipc + 4;" before
returning from syscall. For other exceptions, you need to know the size of the
instruction in order to skip it. In struct NDS32_CONTEXT, there is a field called ipc
which is the address that causes the exception. By looking at the contents there,
you can determine the size of the instruction there. Please see Section 10.3.1.1 for
an example that shows how to skip the instruction.

2. Resume the instruction that causes the exception: In this case, the user-defined

exception handler should just return.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 73

N
Andes Programming Guide for ISA V3 éﬂgggf

Include File: nds32_isr.h

Input & Keyword:

excpt_hdlr
vid

ptr
exception

1ad=xxx

<Is _nested>

Name of an exceptipn handler

VettariD ‘ 3 |

A Ppinterrto 7ND_78372_CONTEXT

Kéywo‘rd to'signify excpt_hridis an exception handler

A series of vector ID separated by comma (“,”); ID should be 1 to 8. This list

allows a handler to be shared by many vectors. At least one ID number is

required.

Setto nested, not_nested, ready nested or critical. It can be omitted.

(Default: not_nested)

B nested means this handler is interruptible.

B not_nested means this handler is not interruptible.

B ready nested means this handler is interruptible after PSW.GIE (global
interrupt enable) is set in the function body manually by
calling__ nds32__setgie_en(). Thisis to allow handler to finish some
short critical code before enabling interrupts.

B critical means thisisacritical (and usually short) handler. This
handler is not interruptible. (Note: This handler MUST be a leaf function
with no child function called. In addition, the handler is advised to be put
in a separate C source file compiled with “—mno-ifc” but no “—mext-zol”
to prevent IFC_LP, LB, LE, and LC registers from being corrupted in this
critical handler..)

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 24
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- i
Andes Programming Guide for ISA V3 éﬂgggsv

10.3.1. Example

#include <nds32_isr._h>

/* System Callxpgmd!er;{fe dy_nested for you to enable GIE when you need.

*/ JIT1Cla

/* The fo qui: 129;\25%56 equivalent */

void NDS32ATTR-EXCEPTE id=8;save all_regs;nested™)
syscall_hdlr(int vid, NDS32_CONTEXT *ptr);

void NDS32ATTR_EXCEPT(*"id=8;nested;save_all_regs'™)
syscall_hdlr(int vid, NDS32 CONTEXT *ptr);

void NDS32ATTR_EXCEPT('id=8;save_all_regs')
syscall_hdlr(int vid, NDS32_CONTEXT *ptr);

10.3.1.1 Example of Skipping the Instruction that Causes the Exception

void NDS32ATTR_EXCEPT("'1d=7;save_all_regs ready_nested;"') ge_hdlr(int vid,
NDS32_CONTEXT *ptr)

{

unsigned char inst;

/* Your exception handling code here. */

/* About to return now, and we want to skip the instruction. */
inst = *((unsigned char*) ptr->ipc);
if (inst>>7)

{
/* Bit[7]: 1 represent 16-bit instruction. */
ptr->ipc += 2;

by

else

{
/* Bit[7]: O represent 32-bit instruction. */
ptr->ipc += 4;

}

return;

}

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 75
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3

ANDES

TECHMNOLOGY

10.4. Linker Options

It is a must to link your program with a library call 1ibnds32_isr.a.

' 4) . . TN

Linker option --def&yji= | NIS3ZoVE

default base address, whiT‘his 0. _
\NCciIca.

A 4 ‘ \

CTOR_BASE=expression can be used to override the

10.4.1. Linker Script

EXTERN(_NDS32 VECTOR BASE) /* defined at the beginning of linker script */

PROVIDE (_NDS32_VECTOR_BASE = 0); /* defined inside SECTIONS */
. = _NDS32_VECTOR_BASE ;

.nds32_vector : { *(SORT_BY_NAME(.nds32_vector.*)) }

You can use linker option --defsym=symbol=expression to override the default base address

-
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,

reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.
Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 76

Andes Programming Guide for ISA V3 éﬂggé

11. ROM Patching

Generally speaking;programsimROM can’t be modified after the embedded system IC is taped
out. If one would like.to upgradedeatures or fix some problems for programs in ROM, he
normally has to putthe-pateh.code intae the flash memory so that the old implementation can be

replaced with the new.one.This.is-knewn as ROM patching.

ROM patch can be applied through indirect call functions or function table mechanism. Indirect
call is an Andes C language extension specially for ROM patching. With the indirect call attribute
added to patchable functions and some modifications on the linker script, the code burnt to the
ROM has an indirection layer on the flash. When a function is being called, it will look up the
function table on the layer for its target address. ROM patching therefore can be achieved

through configurations on the function table.

Indirect call functions provide an easy implementation of ROM patching, yet its implementation
before BSP v4.1.2 has a strict limitation on the ROM and flash address space, i.e. £16 MB. If you
use a BSP version prior to v4.1.2 and have memory addressing beyond the limit, you’ll have to
resort to the other approach — function table mechanism.

The function table mechanism also applies ROM patches via an indirect layer. It has no
addressing limitation and is more portable using the standard C language and few GNU
extension. Yet its implementation for ROM patching is comparatively complicated because it
requires modifications on many parts of the program for adding the user-defined function table

and calling functions through the table.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 77

Andes Programming Guide for ISA V3 éﬂgisv

11.1. Indirect Call Functions

11.1.1. Implementation of Indirect Call Functions

The implementationregtiires-maodifications on the following parts:
1. Program code or header file — Add an indirect call attribute to declaration of patchable
functions

2. Linker script — Add a function table section and allocate it to the flash memory address

11.1.1.1 Apply Indirect Call Attribute to Function Declaration in Your Program or

Header File

To make a function patchable in C programs, you need to add an attribute

“ attribute__ ((indirect_call))” toits declaration. It is strongly recommended to
put the function declaration containing the indirect call attribute in the header file. This
can save the trouble of repeating the attribute in source files and avoid the problem of

“mixed calls”.

“Mixed calls” of a function refer to a function that is declared inconsistently in different
source files and should be avoided when you implement indirect call functions for ROM
patching. The following is an example: the function “foo” is declared with the indirect call

attribute in main.c and without the attribute in bar.c.

<main.c>

int foo(int) _ attribute_ ((indirect_call));
int bar(int);

int foo(int v)

{

return v;

nt main()

T

bar (1) + foo(1);
return O;

}

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 78
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂgisv

<bar.c>

int foo(int);
int bar(int v)
{

return oo (V)y=+T3;

}

Though Andes'tealchaincan detect mixed calls of a function and try to fix them, the linker

gives warnings for the problem:
Warning: there are mixed indirect call function "foo*

To get around this error, just put the function declaration with the indirect call attribute in
the header file.

11.1.1.2 Add .nds32.ict Section to Linker Script

In addition to appending an attribute to function declaration, you also need to add a new
section “.nds32.ict” to your linker script for ROM patching. To make the section

overwritable, allocate it to the flash memory address as follows:
-nds32_.ict FLASH _ADDRESS : { *(.nds32.ict) }

11.1.2. Limitations

Here are some limitations of indirect call implementation:

B Indirect call functions can’t be inline: To ensure the program is patchable, Andes
compiler forbids indirect call functions to be inline.

B The indirect call attribute applies to extern functions only: Namely, you cannot
declare “static void foo();” as an indirect call function by appending
“ attribute_ ((indirect_call))”toit.

B Standard C Library is not recommended for indirect call functions: The standard
C library as compiled binaries has complex call sequence hierarchy and may result in
unexpected consequences when used with indirect call functions.

B Assembly code needs to be handled manually: For example, use “bal foo@ICT” for

“pal foo”.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 79
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- .
Andes Programming Guide for ISA V3 émgggf

B The patch code can’t access static variables in the original code: ThisisaC
language convention that a static variable can’t be accessed by any translation units outside
its scope.

of ol]

11.1.3. Tutorial |

Given a code examp[e\like{ belpwithis section demonstrates how to perform ROM patching with

o

indirect call:

#include <stdio.h>
#include <stdlib.h>
int funcl(int);

int func2(int);

int func3(int);

int numl=1;

int num2=2;

int num3=3;

int main(void) {
printf("funcl(30)=%d\n"*, funcl(30));
printf(*"func2(30)=%d\n"", func2(30));
printf(""func3(30)=%d\n", func3(30));
return EXIT_SUCCESS;

}

int funcl(int x) {
return X * numl;

by
int func2(int x) {

return X * num2;

nt func3(int x)

T

return X * num3;

}

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 80
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 émgggf

Preparation: Modify your program by appending “indirect_call” attribute to patchable

functions

Suppose that funcl, func2 and func3 may need to be patched in the future, you can make them

patchable by adding the “indireft_cai\i"’ attribute to their declaration:
#include <stdio.h> .
#include ssfaliblro g e
int funcl(int) ___attribute” ((indirect_call));
int func2(int) _ attribute__ ((indirect _call));
int func3(int) _ attribute ((indirect _call));
int numl=1;
int num2=2;
int num3=3;

int main(void) {
printf("funcl(30)=%d\n"*, funcl(30));
printf("func2(30)=%d\n"*, func2(30));
printf(*"func3(30)=%d\n", func3(30));
return EXIT_SUCCESS;

+

int funcl(int x) {
return X * numl;

he
int func2(int x) {

return X * num2;

nt func3(int x)

T

return x * num3;

}

Preparation: Modify linker script by defining a .nds32.ict section

Next, add an .nds32. ict section to your linker script and set it to the flash address. Assuming
that the base address of your flash memory is 0x510000, define the .nds32. ict section as

follows:

.nds32.ict 0x510000 : { *(.nds32.ict) }

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 81

Andes Programming Guide for ISA V3 éﬂgisv

For a SaG-formatted file to be used with the linker script generator command nds_ldsag (see

Chapter 15), define the .nds32. ict section as follows:
USER_SECTIONS .nds32.ict
LOAD 0x510000

{
EXEC +0xD

{

* (.nds32.%ct)

Preparation: Compile and Link program with specific options

Depending on your address space layout, add a compilation flag from listed below to compile
your program:
B -mict-model=small (enabled by default)

This flag allocates 4 bytes for each call-site and is used if the address space between ROM

and flash memory is within £16 MB.

B -mict-model=large
This flag allocates 10 bytes for each call-site. It results in larger code size, yet has no
limitation on address space layout. If the address space between ROM and flash memory is
beyond £16MB, make sure you use this flag for compilation.

Then, use the options “-WI , --mexport-symbols=sym. Id” to link the program and export the
symbol addresses. Andes toolchain will generate nds32_ict.s as well as sym. Id after linking.
Both sym.Id and nds32_ict.s are needed for patching functions. sym. Id contains all symbol
addresses in the program and thus can prevent the linker from pulling the symbols again during

the compilation of the patch code.

For example, with a linker script “nds32. 1d” and an address space between ROM and flash

memory more than 16MB, use the following commands to build the program:

nds32le-elf-gcc main.c -mict-model=large -Wl,-T,nds32.1d -0 rom-patch-demo
-WI, --mexport-symbols=sym. Id

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 82
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggﬁ,

The content of nds32_ict.s generated afterwards is as follows:

.section .nds32.i1ct, "ax
.globl _INDIRECT_ CALL_TABLE BASE
_INDIRECT_CALL_TABLE_BASE_ :

J fTunc2 -
j fun¢3 "
] funcl‘

DO NOT edit nds$2! &t . §.-rot-éven to reorder the lines. It will break the program.

Create patch code
Now you can patch a function declared with the indirect_call attribute. For example, create

patch code (patch.c) for func2 as follows:

#include <stdio.h>
#include <stdlib.h>

int func2(int) _ attribute__((indirect_call));
extern Int num2;

int func2(int x) {
return X * num2 * 10;

}

Modify linker script and sym.Id

Then, modify your linker script or SaG file so that both the patch code and the .nds32.ict
section are set to the base address of the flash memory (0x510000 in this case). In this example,
to ensure the linker know where to allocate the new func2, delete the line about func?2 in

sym. Id (a file generated after linking) and modify the linker script or SaG file by adding
“INCLUDE “‘sym. I1d”” in the header and adding the .nds32. ict section.

Generate patch image
Rename the modified linker script as “patch. Id” and generate the patch image using the

commands below:

nds32le-elf-gcc patch.c nds32_ict.s -Wl,-T,patch.ld -o patch.out -nostdlib
-fno-zero-initialized-in-bss

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 83
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 émgggf

The option “~-nostdlib” prevents the linker from grabbing C library into the patch image while

“~fno-zero-initialized-in-bss” prevents the compiler from putting variables into the .bss

section. The latter is used because the original code that clears the .bss section doesn’t know the
new .bss section in.the patch code.

]

-
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,

reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.
Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 84

Andes Programming Guide for ISA V3 éuﬂQ_OEGsv

11.2. Function Table Mechanism

11.2.1. Implementation of Function Table Mechanism

This mechanism requires-madifications on the following parts:

1. Program code — Add a function table for patchable functions

2. Program code —+ Change éach’call-site for patchable functions

3. Linker script — Add a function table section and allocate it to the flash memory address

11.2.1.1 Add Function Table for Patchable Functions to Your Program
In your program, define a structure that includes variables for patchable functions. For

example,
int bar(int);
int foo(int);

typedef struct {
int (*foo)(int);
int (*bar)(int);
} func_table t;

Declare a variable “func_table” and initialize the data for patchable functions. In case
“func_table” is optimized out by the compiler, DO NOT declare it as a static or const

variable.
struct func_table_t func _table _ attribute ((section (""FUNC_TABLE™))) =
{.foo = foo,

.bar = bar};

11.2.1.2 Change Every Call-site for Patch-able Functions in Your Program

For example, given the call-site for the function “bar” like below:
printf (bar 10 = %d\n', bar (10));

Modify it as follows so that it can be called via func_table:
printf (bar 10 = %d\n", func_table.bar (10));

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 85
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggﬁ,

11.2.1.3 Add Function Table Section to Linker Script

Add a new section “_FUNC_TABLE” to your linker script. To make the section overwritable,
allocate it to the flash memory address as follows:

.FUNC_TABLE"FLASH ADDRESS™; { *(.FUNC_TABLE) }

|) ~
11.2.2. Limitations* "~

B Assembly code needs to be handled manually: For example, replace “bal foo” with
la $ta, func_table
Iwi $ta, [$ta + <offset of foo in func_table>]
jral $ta

B The patch code can’t access static variables in the original code: ThisisaC

language convention that a static variable can’t be accessed by any translation units outside
its scope.

11.2.3. Tutorial

Given a code example like below, this section demonstrates how to perform ROM patching with
function table mechanism:

#include <stdio.h>

#include <stdlib.h>

int funcl(int);

int func2(int);

int func3(int);

int numl=1;

int num2=2;

int num3=3;

int main(void) {
printf(*"funcl(30)=%d\n"", funcl(30));
printf("func2(30)=%d\n"*, func2(30));
printf("func3(30)=%d\n"*, func3(30));
return EXIT_SUCCESS;

by

int funcl(int x) {

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 86
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- .
Andes Programming Guide for ISA V3 éﬂ&&g

return x * numl;

by
int func2(int x) {

return X * num2;

})) N
int func3(int x? ~ ﬂW ~
{ -
Raboace
return x| rQHm%if 3Se
3 1 ,

Preparation: Modify program code

Suppose that funcl, func2 and func3 may need to be patched in the future, define a
func_table_t struct that contains variables for these functions and declare a variable
func_table based on that structure. To prevent the compiler from optimizing out the
indirection layer, DO NOT to define func_table as a const or static global variable. Then,

modify each call-site for these functions so that they can be called via “func_table”.

#include <stdio.h>
#include <stdlib.h>
int funcl(int);
int func2(int);
int func3(int);
int numl=1;
int num2=2;
int num3=3;

typedef struct {
int (*funcl)(int);
int (*func2)(int);
int (*func3)(int);
} func_table_t;

func_table_t func_table _ attribute ((section (""FUNC _TABLE™))); =
{.funcl = funcl,

.func2 = func2,

.func3 = func3};

int main(void) {
printf(*"funcl(30)=%d\n"", func_table.funcl(30));

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 87
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

N
Andes Programming Guide for ISA V3 éﬂgggf

printf(*"func2(30)=%d\n"*, func_table.func2(30));
printf(*"func3(30)=%d\n"", func_table.func3(30));
return EXIT_SUCCESS;

}

int funcl(inte=~x2cf _ *
return x| * *atuml;

+ DAl

int funcZ(iﬁt‘x) {
return X * num2;

+
int func3(int x)
{

return x * num3;

}

Preparation: Modify linker script
Next, add a . FUNC_TABLE section to your linker script and set it to the flash address. Assuming
that the base address of your flash memory is 0x510000, define the . FUNC_TABLE section in

your linker script as follows:

_FUNC_TABLE 0x510000 : { *(.FUNC_TABLE) }

Preparation: Link program with specific options
Then, use the options “-WI , --mexport-symbols=sym. Id” to link the program and export the

symbol addresses.

nds32le-elf-gcc main.c -Wl,-T,nds32.1d -0 rom-patch -demo
-WI, —-mexport-symbols=sym. Id

Create patch code
Create a patch code that contains the same func_table_t struct. Note that the variables in the
structure can’t be reordered, added or removed. For example, create a patch code (patch.c) for

func?2 as follows:
int funcl(int);
int func2(int);

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 88
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggﬁ,

int func3(int);

typedef struct {
int (*funcl)(int);
int (*func2)(int);
int (CfuhcH(int):
} func_tahble-t;

[:
func_table t \functable'= attribute ((section ("'FUNC_TABLE™))); =

{.funcl = funcl,
-.func2
.func3

func2,
func3};

extern int num2;

int func2(int x) {
return X * num2 * 10;

}

Modify linker script and sym.ld
Then, modify your linker script or SaG file so that both the patch code and the .FUNC_TABLE

section are set to the base address of the flash memory (0x510000 in this case). In this example,
to ensure the linker know where to allocate the new func2, you can delete the line about func2
in sym. Id (a file generated after linking) and modify the linker script or SaG file by adding
“INCLUDE ““sym.1d”” in the header and adding the .FUNC_TABLE section

Generate patch image

Rename the modified linker script as “patch. Id” and generate the patch image using the

commands below:

nds32le-elf-gcc patch.c -WI,-T,patch.ld -0 patch.out -nostdlib
-fno-zero-initialized-in-bss

The option “~-nostdlib” prevents the linker from grabbing C library into the patch image while
“~fno-zero-initialized-in-bss” prevents the compiler from putting variables into the .bss
section. The latter is used because the original code that clears the .bss section doesn’t know the

new .bss section in the patch code.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 89

Andes Programming Guide for ISA V3 éﬂggﬁ,

12. Andes Intrinsic Function Programming

In compiler theorys-amrintrinsic-function is a function available in a given language whose

implementation is handled spé&ially by the compiler. If a function is intrinsic, the code for that

function is usually ifiserted.inling; avoiding the overhead of a function call and allowing highly
‘ ‘

efficient machine imstructions-to-be-emitted for that function.

The current Andes intrinsic functions are for users (including OS engineers) who don’t want to

program in assembly. They cover all the operations which compiler cannot generate.

NOTE: Be sure to use the correct signedness for arguments and return values when calling
intrinsic functions. Starting from BSP v4.0 official, the compiler has a strict type
checking. It gives warnings for incorrect signedness and reports errors if the option

-Werror is specified.

12.1. Summary of Andes Intrinsic Functions

For each Andes intrinsic function, its syntax, mapped Andes instruction, and if compiler can

schedule it or not (schedulable) are shown in the following tables.

Table 10. Intrinsics for Load/Store

Mapped
Intrinsic Function Syntax Andes Schedulable | Page
Instruction
unsigned int _ nds32__ llw(unsigned int *a) LLW No 104
char _ nds32__ lbup(unsigned char *a) LBUP Yes 105
unsigned Int _ nds32__ lwup(unsigned int *a) LWUP Yes 106
unsigned int _ nds32__scw(unsigned int *a, unsigned int
SCw No 108
b)
void _ nds32_ sbup(unsigned char *a, char b) SBUP Yes 107
void _ nds32_ swup(unsigned int *a, unsigned int b) SWUP Yes 109

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 90
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3

ANDES

TECHMNOLOGY

Table 11. Intrinsics for Read/Write System and USR Registers

Mapped
Intrinsic Function Syntax Andes Schedulable | Page
. X Instruction
unsigned int _nds32_‘mfsr(4¢oﬁst enum nds32_sr srname) MFSR No 111
unsigned int _nqjsiézimfus;q(i:o\nst enum nds32_usr
ey’ MFUSR No 112
usrname)
void _ nds32_ mtsr(unsigned int val, const enum
MTSR No 113
nds32_sr srname)
void _ nds32__ mtsr_isb(unsigned int val, const enum MTSR
No 114
nds32_sr srname) 1SB
void _ nds32_ mtsr_dsb(unsigned int val, const enum MTSR
No 115
nds32_sr srname) DSB
void _ nds32__mtusr(unsigned int val, const enum
MTUSR No 116
nds32_usr usrname)
Table 12. Miscellaneous Intrinsics
Mapped
Intrinsic Function Syntax Andes Schedulable | Page
Instruction
void _ nds32_ break(const unsigned int swid) BREAK No 120
void _ nds32_cctlva lck(const enum nds32_ cctl _valck
CCTL No 121
subtype, unsigned iInt *va)
void _ nds32__ cctlidx _wbinval(const enum
CCTL No 121
nds32_cctl_idxwbinv subtype, unsigned int idx)
void _ nds32_ cctlva wbinval_alvl(const enum
CCTL No 121
nds32_cctl_vawbinv subtype, unsigned int *va)
void _ nds32__cctlva_wbinval_one_lvl(const enum
CCTL No 121
nds32_cctl_vawbinv subtype, unsigned int *va)
unsigned int _ nds32__ cctlidx_read(const enum CCTL No 121

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 91

Andes Programming Guide for ISA V3

ANDES

TECHMNOLOGY

Mapped
Intrinsic Function Syntax Andes Schedulable | Page
Instruction
nds32_cctl_idxread—subtypeT—uﬂsigned int 1dx)
[= ~n ,‘J _ 1 |
void __ndsBZ__cctIidﬂ:wriié(éohst enum
nds32_cctl_idxwrﬂ1§é§ﬂb£ypﬁ,fu@§igned int b, unsigned CCTL No 121
int idxw) ~———
void _ nds32__ cctl_11d_invalall() CCTL No 121
void _ nds32__cctl_11d wball_alvl() CCTL No 121
void _ nds32__ cctl_I11d wball_one_Ivl() CCTL No 121
void _ nds32__dpref_qw(unsigned char *a, unsigned int
DPREF No 124
b, const enum nds32_dpref subtype)
void _ nds32_ dpref_hw(unsigned short int *a, unsigned
DPREF No 124
int b, const enum nds32_dpref subtype)
void _ nds32__dpref_w(unsigned int *a, unsigned int b,
DPREF No 124
const enum nds32_dpref subtype)
void _ nds32_ dpref_dw(unsigned long long *a, unsigned
DPREF No 124
int b, const enum nds32_dpref subtype)
void _ nds32_ dsb(Q DSB No 126
unsigned int _ nds32_ get current_sp() No 127
unsigned long long _ nds32_ get unaligned dw(unsigned
Yes 128
long long *a)
unsigned int _ nds32___get unaligned_w(unsigned int *a) Yes 128
unsigned short _ nds32__ get unaligned_hw(unsigned
Yes 128
short *a)
void _ nds32__isbh(Q I1SB No 129
void _ nds32__isync(unsigned int *a) ISYNC No 130
void _ nds32_jr_itoff(unsigned int a) JR.ITOFF No 131
void _ nds32_ jr_toff(unsigned int a) JR.TOFF No 132
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 92
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY
Mapped
Intrinsic Function Syntax Andes Schedulable | Page
Instruction
void nd532__Jraigfteﬁ(Uﬁs1gﬁed\|nt a) JRAL.ITON No 133
void _ nds32__ jral tJ—(unS|gneh int a) JRAL.TON No 134
void __nds32_rsft@loy g e MSYNC No 135
void __nd532__m$ync_store() ' MSYNC No 135
void _ nds32__nop() NOP No 136
void _ nds32_ put_unaligned_dw(unsigned long long *a,
Yes 137
unsigned long long data)
void _ nds32__ put_unaligned_w(unsigned int *a,
Yes 137
unsigned int data)
void _ nds32__ put_unaligned_hw(unsigned short *a,
Yes 137
unsigned short data)
unsigned int _ nds32_ return_address() No 141
void _ nds32_ ret_itoff(unsigned int a) RET. ITOFF No 142
void _ nds32_ ret toff(unsigned int a) RET.TOFF No 143
unsigned int _ nds32__ rotr(unsigned int val, unsigned
ROTR Yes 138
int ror)
void _ nds32_ schedule barrier() No 139
void _ nds32_ set current_sp(unsigned int sp) No 144
void _ nds32_ standby no wake grant() STANDBY No 145
void _ nds32_ standby wake grant() STANDBY No 145
void _ nds32_ standby wait_done() STANDBY No 145
void _ nds32__teqgz(const unsigned int a, const unsigned
TEQZ No 149
int swid)
void _ nds32__tnez(const unsigned int a, const unsigned
TNEZ No 149
int swid)
void _ nds32_ trap(const unsigned int swid) TRAP No 149

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 93
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGOY
Mapped
Intrinsic Function Syntax Andes Schedulable | Page
Instruction

void __ndsB2__seteﬁd;?ig()iggg?ﬁ\ SETEND No 140
void _ndsaz_setend;‘rl;tt,ié(fj" SETEND No 140
unsigned int __n4§§2§l$ga(ﬁni{§; int b) SVA Yes 146
unsigned int __HdsBZ__svs(int a, int b) SVS Yes 147
void _ nds32__syscall(const unsigned int swid) SYSCALL No 148
unsigned Int _ nds32__ wsbh(unsigned int a) WSBH Yes 150

Table 13. Intrinsics for PE1 Instructions

Mapped
Intrinsic Function Syntax Andes Schedulable | Page
Instruction

int _ nds32_ _abs(int a) ABS Yes 152
int _ nds32__ave(int a, int b) AVE Yes 153
unsigned int _ nds32__ bclr(unsigned int a, const

BCLR Yes 154
unsigned iInt pos)
unsigned int _ nds32_ bset(unsigned int a, const

BSET Yes 154
unsigned iInt pos)
unsigned int _ nds32__ btgl(unsigned int a, const

BTGL Yes 154
unsigned iInt pos)
unsigned int _ nds32_ btst(unsigned int a, const

BTST Yes 154
unsigned iInt pos)
unsigned int _ nds32_ clip(int a, const unsigned int

CLIP Yes 156
imm)
int _ nds32_ clips(int a, const unsigned int imm) CLIPS Yes 157
unsigned int _ nds32_ clz(unsigned int a) CLz Yes 159
unsigned int _ nds32_ clo(unsigned int a) CLO Yes 158

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 94
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3

ANDES

TECHNOLOGY
Table 14. Intrinsics for PE2 Instructions
Mapped
Intrinsic Function Syntax Andes Schedulable | Page
S N Instruction
void _ndsBZ_bse(unéigned it *t, unsigned int a,
) i : BSE Yes 161
unsigned int *b) } ;{ a ;x‘ C O
A y - A w -
void _nds32_b$p(unsigned int */t, unsigned int a,
BSP Yes 162
unsigned int *b)
unsigned Iint _ nds32_ pbsad(unsigned int a, unsigned
PBSAD Yes 163
int b)
unsigned int _ nds32__ pbsada(unsigned int acc, unsigned
PBSADA Yes 164
int a, unsigned int b)
Table 15. Intrinsics for String
Mapped
Intrinsic Function Syntax Andes Schedulable | Page
Instruction
int _ nds32__ ffb(unsigned int a, unsigned int b) FFB Yes 166
int _ nds32__ ffmism(unsigned int a, unsigned int b) FFMISM Yes 168
int _ nds32__ fImism(unsigned int a, unsigned int b) FLMISM Yes 169
Table 16. Intrinsics for FPU
Mapped
Intrinsic Function Syntax Andes Schedulable | Page
Instruction
double _ nds32_ fcpynsd(double a, double b) FCPYNSD Yes 171
float _ nds32_ fcpynss(float a, float b) FCPYNSS Yes 171
double _ nds32_ fcpysd(double a, double b) FCPYSD Yes 171
float _ nds32_ fcpyss(float a, float b) FCPYSS Yes 171
unsigned int _ nds32__ fmfcsr() FMFCSR No 174
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 95
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3

ANDES

TECHMNOLOGY

Mapped
Intrinsic Function Syntax Andes Schedulable | Page
Instruction
void _ndsBZ_fmttsr(?ﬂsigljed—int fpcsr) FMTCSR No 175
unsigned int _nds32_fmf;:ﬁgé) FMFCFG Yes 173
DAl ~
o Table 17. Intrinsics for TLBOP
Mapped
Intrinsic Function Syntax Andes Schedulable | Page
Instruction
void _ nds32__ tlbop_trd(unsigned int a) TLBOP No 177
void _ nds32__ tlbop_twr(unsigned int a) TLBOP No 178
void _ nds32__ tlbop_rwr(unsigned int a) TLBOP No 179
void _ nds32__ tlbop_rwlk(unsigned int a) TLBOP No 180
void _ nds32__ tlbop_unlk(unsigned int a) TLBOP No 181
void _ nds32__ tlbop_pb(unsigned int a) TLBOP No 182
void _ nds32__ tlbop_inv(unsigned int a) TLBOP No 184
void _ nds32__ tlbop_flua(Q) TLBOP No 185
Table 18. Intrinsics for Saturation ISA
Mapped
Intrinsic Function Syntax Andes Schedulable | Page
Instruction
int _ nds32_ kaddw(int a, int b) KADDW Yes 187
int _ nds32_ ksubw(int a, int b) KSUBW Yes 188
int _ nds32_ kaddh(int a, int b) KADDH Yes 189
int _ nds32_ ksubh(int a, int b) KSUBH Yes 190
int _ nds32__kdmbb(unsigned int a, unsigned int b) KDMBB Yes 191
int _ nds32__ kdmbt(unsigned int a, unsigned int b) KDMBT Yes 191

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGOY
Mapped
Intrinsic Function Syntax Andes Schedulable | Page
Instruction

int _ndsBZ_kdmtb(u@fgﬁeq—iﬁt'Q, unsigned int b) KDMTB Yes 191
int _ndSBZ_kdmtt(uszigné(J int a, unsigned int b) KDMTT Yes 191
int _ndsBZ_khmdb(uq&,[,igne’q int al, unsigned int b) KHMBB Yes 192
int _ndSBZ_khrﬁbt(unsigned int /a, unsigned int b) KHMBT Yes 192
int _ nds32__khmtb(unsigned int a, unsigned int b) KHMTB Yes 192
int _ nds32__khmtt(unsigned int a, unsigned int b) KHMTT Yes 192
int _ nds32__ _kslraw(int a, signed char b) KSLRAW Yes 193
unsigned Iint _ nds32__ rdov(Q) RDOV Yes 194
void _ nds32___clrov(Q) CLROV Yes 195

Table 19. Intrinsics for Interruption

Mapped
Intrinsic Function Syntax Andes Schedulable | Page
Instruction

void _ nds32__ setgie_dis(Q) SETGIE No 197
void _ nds32__setgie_en() SETGIE No 197
void _ nds32__gie dis(Q) No 198
void _ nds32__gie_en() No 198
void _ nds32__enable_int(enum nds32_intrinsic int_id) No 199
void _ nds32__disable_int(enum nds32_intrinsic int_id) No 199
void _ nds32__set_pending_swint() No 201
void _ nds32__ clr_pending_swint() No 201
void _ nds32__ clr_pending_hwint(enum nds32_intrinsic

No 202
int_id)
unsigned int _ nds32_get pending_int(enum

No 204
nds32_intrinsic Int_id)

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 97
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY
Mapped
Intrinsic Function Syntax Andes Schedulable | Page
Instruction
unsigned int _ﬁd332 “get__jll__pe\nding_int() No 206
TT1CIa
void _nds32_se1r_/irit‘Fp‘r‘iori,ty‘(enum nds32_intrinsic
IN\CICOOC No 207
int_id, unsigneth.int_prio) S
unsigned int _ nds32__get_int_priority(enum
No 207
nds32_intrinsic Int_id)
unsigned Int _ nds32_ get_ trig_type(enum
No 209
nds32_intrinsic int_id)
Table 20. Intrinsics for COP Instructions
Mapped
Intrinsic Function Syntax Andes Schedulable | Page
Instruction
void _ nds32_ cpel(const unsigned int cpn, const
unsigned iInt cpil9)
void _ nds32__cpe2(const unsigned int cpn, const CPE1
unsigned int cpil9) CPE2
No 212
void _ nds32__cpe3(const unsigned int cpn, const CPE3
unsigned Int cpil9) CPE4
void _ nds32__cped(const unsigned int cpn, const
unsigned Int cpil9)
void _ nds32__cpld(const unsigned int cpn, const
unsigned int cprn, unsigned long long *base, signed int
roffset, const unsignhed int sv) CPLD
No 213
void _ nds32__cpld_bi(const unsigned int cpn, const CPLD.BI
unsigned int cprn, unsigned long long *base, signed int
roffset, const unsigned int sv)

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 98
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

ANDES

Andes Programming Guide for ISA V3 TeCHNOLOOY
Mapped
Intrinsic Function Syntax Andes Schedulable | Page
Instruction

void _ nds32 c d int cpn, const

~

»(—‘ /= ; — |
unsigned intcp n,unsiéﬂedeﬁﬁhong*base,constsigned
int imml2) IQJ[QiJﬁ\fafi‘ CPLDI
‘ CCoOC) No 215
gned int cpn, const CPLDI.BI

D
L\
void _ nds32_ cpldi

unsigned int cprn, unsigned long long *base, const signed

int imml2)

void _ nds32__cplw(const unsigned int cpn, const

unsigned int cprn, unsigned int *base, signed int

roffset, const unsigned int sv) CPLW
No 217
void _ nds32__ cplw_bi(const unsigned int cpn, const CPLW.BI
unsigned int cprn, unsigned int *base, signed int
roffset, const unsigned int sv)
void _ nds32__ cplwi(const unsigned int cpn, const
unsigned Int cprn, unsigned int *base, const signed int
imml2) CPLWI
No 219
void _ nds32__cplwi_bi(const unsigned int cpn, const CPLWI.BI
unsigned Int cprn, unsigned int *base, const signed int
imml2)
void _ nds32__ cpsd(const unsigned int cpn, const
unsigned Int cprn, unsigned long long *base, signed int
roffset, const unsigned int sv) CPSD
No 221
void _ nds32_cpsd_bi(const unsigned int cpn, const CPSD.BI
unsigned Int cprn, unsigned long long *base, signed int
roffset, const unsigned int sv)
void _ nds32_ cpsdi(const unsigned int cpn, const
unsigned int cprn, unsigned long long *base, const signed CPSDI
No 223
int imml12) CPSDI .BI

void _ nds32_cpsdi_bi(const unsigned int cpn, const

Page 99

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY
Mapped
Intrinsic Function Syntax Andes Schedulable | Page
Instruction
unsignedintcprqfuﬂsigﬂedJGHgJBQQ*base,constsigned
y g (—4 - \
int imml12) JTTA‘ (@ {
void _ nds32 #pSWLQgTSE_Gﬂ$¥gﬂ$d int cpn, const
unsigned int cp? i base, signed int
roffset, const unsigned int sv) CPSW
No 225
void _ nds32_ cpsw_bi(const unsigned int cpn, const CPSW.BI
unsigned int cprn, unsigned int *base, signed int
roffset, const unsigned int sv)
void _ nds32_ cpswi(const unsigned int cpn, const
unsigned Int cprn, unsigned int *base, const signed int
imml2) CPSWI
No 227
void _ nds32_ cpswi_bi(const unsigned int cpn, const CPSWI.B
unsigned Int cprn, unsigned int *base, const signed int
imml2)
unsigned long long _ nds32__ mfcpd(const unsigned int
MFCPD No 229
cpn, const unsigned int imml2)
unsigned int _ nds32_ mfcpw(const unsigned int cpn,
MFCPW No 230
unsigned const int imml2)
unsigned int _ nds32_ mfcppw(const unsigned int cpn,
MFCPPW No 231
const unsigned int imml2)
void _ nds32__mtcpd(const unsigned int cpn, unsigned
MTCPD No 232
long long source, const unsigned int imml2)
void _ nds32_ mtcpw(const unsigned int cpn, unsigned
MTCPW No 233
int source, const unsigned int imml2)
void _ nds32_ mtcppw(const unsigned int cpn, unsigned
MTCPPW No 234
int source, const unsigned int imml2)

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 100
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

NOTE: Instruction scheduling is a compiler optimization used to improve instruction-level
parallelism, which improves performance on machines with instruction pipelines.
Namely, without changing the meaning of the code, it tries to avoid pipeline stalls by

rearranging.the order of instructions. The following is an instruction scheduling
example: 41

B code example before instruction scheduling

InstructionA
InstructionB
InstructionC

B code example after instruction scheduling

InstructionA
InstructionC
InstructionB

——
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 101
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂgisv

12.2. Detailed Intrinsic Function Description

To help you quickly identify which intrinsic functions are available, each intrinsic function is
specified with the Instruction.Set. Architecture (ISA) version and supported CPUs. The ISA
version maintains backward conjpatibility, so a CPU with higher ISA version supports all
intrinsic functions fram the lower versions (but not vice versa). For example, a CPU with ISA V3
supports all intrinsic functions avaitable in ISA V1 and V2. On the other hand, a CPU with ISA V1
does not support any intrinsic functions available in ISA V2 or V3. If a non-supported intrinsic
function is executed, the CPU will generate a “Reserved Instruction Exception.” Furthermore,
during program execution or debugging, the ISA version can be identified by the value of the
system register MSC_CFG.BASEV: 0 for V1, 1 for V2, and 2 for V3.

The following table shows examples of AndesCores supporting V3, V3m or V3m+ ISA and how

the ISA versions are indicated by register bits of these cores.

AndeStar ISA Examples of Supported AndesCores Indication in Register Bits

MSC_CFG.BASEV == 2
V3 N968, N1068, N1337, N15, D1088, D15
& MSC_CFG.MCU ==

MSC_CFG.BASEV ==
& MSC_CFG.MCU ==
V3m N650, N705, N801, E801, S801
& MSC_CFG.IFC ==

& MSC_CFG.EIT ==

MSC_CFG.BASEV ==

& MSC_CFG.MCU ==
V3m+ N820, E830
& MSC_CFG.IFC ==

R P P N O O F N| O

& MSC_CFG.EIT ==

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 102
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 émgggf

12.2.1. Intrinsics for Load/Store

The following table indicates the supported AndesCores for each intrinsic function introduced in

this section.

Intrinsic Functidn | Supported CPUs Page
__nds32__llw) ~ | ~ [-Only AndesCores with V3 (but not with V3m/V3m+) architecture 104
_ nds32__lbup * | | 6nly AndesCores with V3 (but not with V3m/VvV3m+) architecture 105
__nds32___lwup Only AndesCores with V3 (but not with V3m/V3m+) architecture 106
_ nds32__scw Only AndesCores with V3 (but not with V3m/V3m+) architecture 108
__nds32__sbup Only AndesCores with V3 (but not with V3m/V3m+) architecture 107
_nds32__swup Only AndesCores with V3 (but not with V3m/V3m+) architecture 109

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 103
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- .
Andes Programming Guide for ISA V3 éﬂ&&g

Name
_ nds32__ 11w
Syntax

unsigned int _MdS3Z_TIW(UNSTgned int *a)
T1Cla

Where parameter “¥a’ is }hememoy address of variable “a”.
IN\C ITdOC

Description

This intrinsic inserts a LLW instruction into the instruction stream. The memory address for the
load locked operation is specified by *a.

Return Value

The nds32__ I'lwintrinsic returns the memory content of *a.

Privilege Level: ALL

Example

#include <nds32_intrinsic.h>
void func(void)

{

.//\We want to perform atomic read-modify-write operations for variable
rmw.

unsigned iInt success;

unsigned int rmw = OxXO000FFFF; //The initial value of rmw

rmw = nds32_ Ilw(&rmw); //read

.. //modify

success = _ nds32__ scw(&rmw, rmw); //write

//The variable success indicates if the SCW succeed.

s

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 104
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

N
Andes Programming Guide for ISA V3 éﬂgggf

Name
__nds32__lbup

Syntax
char _nds32_lbup(uns—ignfd char *a)

Where parameter “”{a’f 1S the'memary address of variable “a”.

Description
This intrinsic inserts a LBUP instruction into the instruction stream. The memory address for the

load operation with user mode privilege address translation is specified by *a.

Return Value

The _ nds32__ lbup intrinsic returns the memory content of *a.

Privilege Level: ALL

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 105
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- .
Andes Programming Guide for ISA V3 émgggf

Name
_ nds32___ lwup

Syntax

unsigned iInt _;ﬁds32;;lqu(un§}gned int *a)
Where parameter “”J‘é’\’ is £hem¢mqry address of variable “a”.

Description
This intrinsic inserts a LWUP instruction into the instruction stream. The memory address for the

load operation with user mode privilege address translation is specified by *a.

Return Value

The _ nds32__ lwup intrinsic returns the memory content of *a.
Privilege Level: ALL

Example
#include <nds32_intrinsic.h>
void func(void)

{

unsigned Int a;

a=_ nds32__lwup(&a); //This performs memory load operation for variable.
//a with user mode privilege address translation

.. //processing

__nds32__swup(&a, a); //This performs memory store operation for variable.
//a with user mode privilege address translation

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 106
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

N
Andes Programming Guide for ISA V3 éﬂgggf

Name
__nds32__shup

Syntax

void _nds32_sbup(uns—ignfd chdr *a, char b)

Where: } \
Parameter “*a” is the memory address of variable “a”.
Parameter “b” is the byte to be stored.

Description
This intrinsic inserts a SBUP instruction into the instruction stream. The byte to be stored and

the memory address for the store operation with user mode privilege address translation are
specified by b and *a, respectively.

Privilege Level: ALL

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 107
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggﬁ,

Name
__nds32__scw

Syntax

unsigned int __ndssz;;scw(unsigned int *a, unsigned iInt b)

Where: }
Parameter “*a” is the memory address of variable “a”.
Parameter “b” is the 32-bit word to be stored.

Description
This intrinsic inserts a SCW instruction into the instruction stream. The word to be stored and the

memory address for the store conditional operation are specified by b and *a, respectively.

Return Value

If the store operation is successfully performed, 1 is returned. Otherwise, O is returned.
Privilege Level: ALL

Example

Seealso nds32_ Ilw

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 108
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggﬁ,

Name
__nds32__swup

Syntax

void _nds32_swup(uns—ignfd int *a, unsigned int b)

Where: } \
Parameter “*a” is the memory address of variable “a”.
Parameter “b” is the 32-bit word to be stored.

Description
This intrinsic inserts a SWUP instruction into the instruction stream. The word to be stored and

the memory address for the store operation with user mode privilege address translation are
specified by b and *a, respectively.

Privilege Level: ALL

Example
Seealso _ nds32__ lIwup

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 109
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- .
Andes Programming Guide for ISA V3 émgggf

12.2.2. Intrinsics for Read/Write System and USR Registers

The following table indicates the supported AndesCores for each intrinsic function introduced in

this section. 7 7
Intrinsic Functidn ‘ 1C1 > Supported CPUs Page
__nds32__mfsr Dala AII,A[EJQSCOres 111
_ nds32__mfusr * | ‘l 6th AndesCores with V3/V3m+ (but not with V3m) architecture 112
__nds32__mtsr All AndesCores 113
__nds32__mtsr_isb All AndesCores 114
__nds32__mtsr_dsb All AndesCores 115
_nds32__ _mtusr Only AndesCores with V3/V3m+ (but not with V3m) architecture 116

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 110
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY
Name

__nds32__mfsr

Syntax

unsigned int _nd332—_mfsr'(con“st enum nds32_sr srname)

Where: } \

srname is an SR symbolic mnemonic with a prefix NDS32_SR_. For example, the symbolic
mnemonic of processor status word register is PSW while its simple mnemonic is IRO. In this case,
the legal srname is NDS32_SR_PSW, not NDS32_SR_IRO.

Description

This intrinsic returns the content of the SR specified by srname.

Return Value

The _ nds32__ mfsr intrinsic returns the content of the SR specified by srname.
Privilege Level: Superuser and above

Example

Seealso nds32_ mtsr.

Note:

If you specify a USR symbolic mnemonic as srname, compiler might generate a wrong
instruction.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 111
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

N
Andes Programming Guide for ISA V3 éﬂgggf

Name
__nds32__mfusr

Syntax

unsigned int _ndssz;mefr(co\nst enum nds32_usr usrname)

Where: } ’

usrname is a USR symbolic mnemonic with a prefix NDS32_USR_ .

Description

This intrinsic returns the content of the USR specified by usrname.

Return Value

The _ nds32__ mfusr intrinsic returns the content of the USR specified by usrname.
Privilege Level: ALL

Example
Seealso _ nds32_ mtusr.

Note:

If you specify an SR symbolic mnemonic as usrname, compiler might generate a wrong
instruction.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 112
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 émgggf

Name
__nds32___mtsr

Syntax

void __nd332__m£sr unsigned iﬁt val, const enum nds32_sr srname)
gf”

Where: Release
srname is an SR symbolic mnemonic with a prefix NDS32_SR_. For example, the symbolic
mnemonic of processor status word register is PSW while its simple mnemonic is IRO. In this case,

the legal srname is NDS32_SR_PSW, not NDS32_SR__IRO.

Description

This intrinsic moves val to the SR specified by srname.
Privilege Level: Superuser and above

Example

#include <nds32_intrinsic.h>
void func(void)

{
unsigned int psw=_ nds32_ mfsr(NDS32_SR_PSW); //get the content of PSW.
psw = psw | 0x00000080;
__nds32__ _mtsr(psw, NDS32 SR PSW); //set PSW.DT bit.
__nds32__dsb(Q);
s
Note:

If you specify a USR symbolic mnemonic as srname, compiler might generate a wrong
instruction.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 113
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

N
Andes Programming Guide for ISA V3 éﬂgggf

Name
__nds32__mtsr_isb

Syntax

void __nds32__mtsr_isb(unfignéd int val, const enum nds32_sr srname)

Where: } \

srname is an SR symbolic mnemonic with a prefix NDS32_SR_. For example, the symbolic
mnemonic of processor status word register is PSW while its simple mnemonic is IRO. In this case,
the legal srname is NDS32_SR_PSW, not NDS32_SR__IRO.

Description

This intrinsic moves val to the SR specified by srname and then executes an ISB instruction to
make sure the new SR value can be observed by or affect any operation after this intrinsic
function.

Privilege Level: Superuser and above

Example

#include *““nds32_intrinsic.h”
void func(void)

{
unsigned Int psw=_ nds32 mfsr(NDS32_SR PSW); //get the content of PSW.
psw = psw | 0x00000040;
_ nds32__mtsr_isb(psw, NDS32 SR PSW); //set PSW.IT bit.
}
Note:

If you specify a USR symbolic mnemonic as srname, compiler might generate a wrong
instruction.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 114
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

N
Andes Programming Guide for ISA V3 éﬂgggf

Name
__nds32__mtsr_dsb

Syntax

void __nds32__mtsr_dsb(unfignéd int val, const enum nds32_sr srname)

Where: } \

srname is an SR symbolic mnemonic with a prefix NDS32_SR_. For example, the symbolic
mnemonic of processor status word register is PSW while its simple mnemonic is IRO. In this case,
the legal srname is NDS32_SR_PSW, not NDS32_SR__IRO.

Description

This intrinsic moves val to the SR specified by srname and then executes a DSB instruction to
make sure the new SR value can be observed by or affect any operation after this intrinsic
function.

Privilege Level: Superuser and above

Example

#include *““nds32_intrinsic.h”
void func(void)

{
unsigned Int psw=_ nds32 mfsr(NDS32_SR PSW); //get the content of PSW.
psw = psw | 0x00000080;
__nds32__mtsr_dsb(psw, NDS32_ SR _PSW); //set PSW.DT bit.
}
Note:

If you specify a USR symbolic mnemonic as srname, compiler might generate a wrong
instruction.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 115
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- .
Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

Name
__nds32__mtusr

Syntax

void __nd332__mfusrﬁunsigred*fht val, const enum nds32_usr usrname)

Where: - \%‘{ EaSc

A N

usrname isa USR\symboIic mAemonic with a prefix NDS32_USR_.

Description

This intrinsic moves val to the USR specified by usrname.
Privilege Level: ALL

Example

#include <nds32_intrinsic.h>
void func(void)

{
unsigned Int pfm_ctl=_ nds32_ mfusr(NDS32_ SR _PFM_CTL);
//get PFM_CTL
pfm_ctl = pfm_ctl | 0x00000001;
__nds32__mtusr(pfm_ctl, NDS32_SR PFM CTL); //enable PFMCO
+

/* assume the access permission is enabled in user mode*/

Note:

If you specify an SR symbolic mnemonic as usrname, compiler might generate a wrong
instruction.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 116
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggﬁ,

12.2.3. Miscellaneous Intrinsics

The following table indicates the supported AndesCores for each intrinsic function introduced in

this section.

Intrinsi¢ Functi;)rili) ‘ - Supported CPUs Page

__nds32__break ™y ~ | ~ —~ ~ ~ | All AndesCores 120

Only AndesCores with V3 (but not with V3m/V3m+)
__nds32__cctlva_lck 121

architecture

Only AndesCores with V3 (but not with V3m/V3m+)
_ nds32__cctlidx_wbinval 121

architecture

Only AndesCores with V3 (but not with V3m/V3m+)
__nds32__cctlva _wbinval_alvl 121

architecture

Only AndesCores with V3 (but not with V3m/V3m+)
__nds32__cctlva wbinval _one_1Ivl 121
architecture

Only AndesCores with V3 (but not with V3m/V3m+)
_ nds32__cctlidx_read 121

architecture

Only AndesCores with V3 (but not with V3m/V3m+)
__nds32__cctlidx_write 121

architecture

Only AndesCores with V3 (but not with V3m/V3m+)
_ nds32__cctl_I11d_invalall 121
architecture

Only AndesCores with V3 (but not with V3m/V3m+)
__nds32__cctl_11d wball_alvl 121

architecture

Only AndesCores with V3 (but not with V3m/V3m+)
_ nds32__cctl_I11d_wball_one_Ivl 121

architecture

Only AndesCores with V3 (but not with V3m/V3m+)
_ nds32__dpref_qw 124
architecture

Only AndesCores with V3 (but not with V3m/V3m+)
__nds32__dpref_hw 124

architecture

Only AndesCores with V3 (but not with V3m/V3m+)
_ nds32__dpref_w 124
architecture

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 117

Andes Programming Guide for ISA V3

ANDES

TECHMNOLOGY

Intrinsic Function Supported CPUs Page
Only AndesCores with V3 (but not with V3m/V3m+)
__nds32__dpref_dw 124
architecture
__nds32__dsb 4 e s [NAIl AndesCores 126
_nds32_get_current_‘sp ClId All AndesCores 127
\7. y » | & NC ' [
__nds32__get_unali gne(ﬁ_;dw -1 | All AndesCores 128
_ nds32__get_unaligned w All AndesCores 128
_ nds32__get_unaligned hw All AndesCores 128
_ nds32__isb All AndesCores 129
__nds32__isync All AndesCores 130
Only AndesCores with V3 (but not with V3m/V3m+)
_ nds32__ jr_itoff 131
architecture
Only AndesCores with V3 (but not with V3m/V3m+)
_ nds32__ jr_toff 132
architecture
Only AndesCores with V3 (but not with V3m/V3m+)
__nds32__jral_iton 133
architecture
Only AndesCores with V3 (but not with V3m/V3m+)
__nds32__jral_ton 134
architecture
__nds32__msync_all All AndesCores 135
__nds32__msync_store All AndesCores 135
_ _nds32__nop All AndesCores 136
_ nds32__ put_unaligned dw All AndesCores 137
~ nds32__put_unaligned w All AndesCores 137
__nds32__ put_unaligned hw All AndesCores 137
__nds32__return_address All AndesCores 141
Only AndesCores with V3 (but not with V3m/V3m+)
__nds32__ret_itoff 142
architecture
Only AndesCores with V3 (but not with V3m/V3m+)
__nds32__ret_toff 143
architecture
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 118
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

ANDES

Andes Programming Guide for ISA V3 TECHNOLGGY

Intrinsic Function Supported CPUs Page
~_nds32__rotr All AndesCores 138
__nds32__schedule barrier All AndesCores 139
__nds32__set_cufrent _{EE i YAIl AndesCores 144
__nds32__standb y_nd_valakéia I;‘E;'r'ﬁftL All AndesCores 145
_ndsBZ_standbx_J‘Wﬁ@lg(%éEf S /6‘ /AII AndesCores 145
__nds32__standby wait_done All AndesCores 145

Only AndesCores with V3 (but not with V3m/V3m+)
_nds32__teqz 149

architecture

Only AndesCores with V3 (but not with V3m/V3m+)
_ nds32__tnez 149
architecture

Only AndesCores with V3 (but not with V3m/V3m+)
__nds32__trap 149

architecture

__nds32__setend_big All AndesCores 140
__nds32__setend_little All AndesCores 140
_ nds32__sva All AndesCores 146
_ nds32__svs All AndesCores 147
__nds32__syscall All AndesCores 148
__nds32__wsbh All AndesCores 150

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 119
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- .
Andes Programming Guide for ISA V3 émgggf

Name
__nds32__break

Syntax

void __ndsBZ__b?eakﬁcanstJunsf@ned int swid)

Where: }j \ 7{ Case

swid is a 15-bit constant value.

Description
This intrinsic unconditionally generates a breakpoint exception and transfers control to the

breakpoint exception handler. The 15-bits swid is used as a parameter to distinguish different

breakpoint features and usages.

The case that swid > 32767 is not allowed. If it occurs, compiler will generate an error message

of “the argument swid in _ nds32_ break should be in the range 0-32767".

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>
void func(void)

{

_ nds32__ break(0x2C);

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 120
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- .
Andes Programming Guide for ISA V3 QQQEQ

Name

__nds32__cctlva _lIck

__ nds32__cctlidx_wbinval
__nds32__cctlva_wbinval_alvl
__nds32__cctIva:w@inygi:ope:iv{
__nds32__cctlidx_re#d{\: (}“{ |
_ nds32__cctlidx_write o
__nds32__cctl_llE§{ﬁ,éiéfljzi‘~
__nds32__cctl_i1 '
__nds32__cctl_11d wball _one_1Ivl

Syntax

A. void _ nds32_ cctlva_lck(const enum nds32_cctl valck subtype, unsigned int
*va)

B. void _ nds32 cctlidx wbinval(const enum nds32 cctl _idxwbinv subtype,
unsigned Int i1dx)

C. void _ nds32__cctlva_wbinval_alvl(const enum nds32_cctl_vawbinv subtype,
unsigned Int *va,)

D. void _nds32_ cctlva wbinval _one_ lvl(const enum nds32_cctl vawbinv subtype,
unsigned Int *va,)

E. unsigned int _ nds32 cctlidx_read(const enum nds32_cctl_idxread subtype,
unsigned int idx)

F. wvoid__nds32_ cctlidx write(const enum nds32_cctl_idxwrite subtype, unsigned
int b, unsigned iInt idxw)

G. void _ nds32__cctl_I1d_invalall()

H. void _ nds32_ cctl _11d wball_alvli()

I. void _ nds32 cctl _I1d wball one Ivli()

Where:

*va is the virtual address for cctl operation.

idx Is a 32-bit constant which specifies the index and way for cache access.

idxw Is a 32-bit constant which specifies the index, way, and word offset for cache access.

subtype specifies the subtype of the cctl operation. The detailed subtypes for various

syntaxes are listed below

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 121

Andes Programming Guide for ISA V3

ANDES

TECHMNOLOGY

Syntax CCTL subtype Operations
NDS32_CCTL_L1D VA FILLCK,
NDS32_CCTL_L1D VA ULCK,
A Fill and lock, and unlock
J ,ﬁWVA_F ILLCK,
| NDE§Q;§C#£;£1|_VA_ULCK
Riefaggig£ofxueimva.
Nl - " IX_INVAL,
B IDX writeback and invalidate
NDS32_CCTL_L1D IX_WB,
NDS32_CCTL_L11_IX_INVAL
NDS32_CCTL_L1D VA_INVAL,
NDS32_CCTL_L1D_VA WB, All level VA writeback and
¢ NDS32 CCTL_L1D VA WBINVAL, | invalidate
NDS32_CCTL_L11_VA_INVAL
NDS32 CCTL_L1D VA INVAL,
NDS32_CCTL_L1D_VA WB, One level VA writeback and
P NDS32_ CCTL_L1D VA WBINVAL, | invalidate
NDS32_CCTL_L11_VA_INVAL
NDS32_CCTL_L1D IX_RTAG,
NDS32_ CCTL_L1D IX_RWD,
E Cache read
NDS32_CCTL_L11_IX_RTAG,
NDS32_ CCTL_L11_IX_RWD
NDS32 CCTL_L1D_IX_WTAG,
NDS32_CCTL_L1D_IX_WWD,
F Cache write
NDS32 CCTL_L11_IX_WTAG,
NDS32_CCTL_L11_IX_WwWD
Unlock all of the L1D cache lines
G and set the state of all of the L1D
cache lines to invalid.
H All level L1D cache writeback
| One level L1D cache writeback

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 122

TECHMNOLOGY

- -
Andes Programming Guide for ISA V3 ANDES

Description

This intrinsic inserts a CCTL instruction into the instruction stream. Please refer to the CCTL

instruction in AndeStar Instruction Set Architecture Manual for the detailed description.

Return Value NS~ -

Only _ nds32__cctlidx_read returns the content of the cache location. All the others have no
Rele

N

return values.

Privilege Level:

Privilege Level Intrinsics

_ nds32__cctlva_wbinval_alvl

ALL
__nds32__cctlva_wbinval _one_Ivl
Superuser and above All the other types
Example

#include <nds32_intrinsic.h>
void func(void)

{

_nds32__cctl_11d_invalall(); //invalid the whole data cache.
__nds32__dsb(Q;

——
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 123
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 émgggf

Name
__nds32__dpref_qw
__nds32__dpref_hw
__nds32_ _dpref_w
__nds32__dpref dw~

Syntax

void __ndsBZ__dprqf:qw(unsigned char *a, unsigned int b, const enum nds32_dpref
subtype) /

void _ nds32_ dpref _hw(unsigned short int *a, unsigned int b, const enum
nds32_dpref subtype)

void _ nds32__dpref_w(unsigned int *a, unsigned int b, const enum nds32_dpref
subtype)

void _ nds32_ dpref _dw(unsigned long long *a, unsigned int b, const enum
nds32_dpref subtype)

Where:
Parameter “*a” is an address of an array element.
Parameter “b” is the byte/half word/word/double word offset based on the data type in syntax.

subtype defines subtype of the data prefetch operation.

Description

Depending on the type of variable b, this intrinsic inserts a DPREF or DPREFI instruction into the
instruction stream. If b is a constant while using _ nds32__ dpref wand _ nds32_ dpref_dw,
DPREFI is inserted. Otherwise, DPREF1 is inserted. It will perform a data prefetch operation for
bth array element from a. The subtype argument of this intrinsic is used as a hint to tell
hardware the intended use of the prefetched data so that the hardware implementation may use
different prefetch schemes to optimize the performance. Note that N9/N10/N13/N15/D10/D15
implementation prefetches the data cache block which contains a for all DPREF/DPREF I
subtypes.

The case that constant type b > 16383 and b < -16384 is not allowed in __nds32__dpref_wand
__nds32__dpref_dw. If it occurs, compiler will generate an error message of “the constant
type argument b in _ nds32_ dpref_w or _ nds32_ dpref_dw should be in the range
between -16384 and 16383".

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 124

A g N
Andes Programming Guide for ISA V3 NDES

TECHMNOLOGY
Privilege Level: ALL

Example

#include <nds32 intrinsic.h>
void func

: “Official
nsiond R HEOJK o

for (int i=0,
{

i<100, i++)

__nds32__dpref(a, i+1, NDS32 DPREF _SRD); //prefetch a[i+1] for next.

//i1teration

I
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,

reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.
Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 125

A .
Andes Programming Guide for ISA V3 NDES

TECHMNOLOGY

Name
__nds32__dsb

Syntax
void _ nds32_ dsh@ e [\

~ N

(@

|
e B

Description | <& [ease

U DN)

This intrinsic inseFfs a DSB instruction into the instruction stream.
Privilege Level: ALL

Example

#include <nds32_intrinsic.h>
void func(void)

{
__nds32__setgie dis(); //disable global interrupt
__nds32__dsb(); //make sure the change in PSW.GIE is seen by any following.
//l1oad/store instructions.
be

-
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 126
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3

ANDES

TECHNOLOGY
Name
__nds32__get_current_sp
Syntax
unsigned int _[nds3d2 getJCU{Fént spQO
Description | J&; [ease
This intrinsic function returns the current stack point value.
Privilege Level: ALL
Example
#include <nds32_intrinsic.h>
void func(void)
{
unsigned int sp;
sp = _ nds32__get _current_sp(); //sp is the current stack point.
be

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 127

- .
Andes Programming Guide for ISA V3 QQQEQ

Name

__nds32__get _unaligned_dw
_ nds32__get_unaligned w
__nds32__get _unaligned _hw

\ 1

Syntax [T1C J
unsigned long Iong‘#ngsgz;get_unaligned_dw(unsigned long long *a)
unsigned int _-n‘d§3”2_§et‘_ﬂn5’ﬂgned_w(unsigned int *a)

unsigned short _ nds32 get unaligned hw(unsigned short *a)

Where parameter “*a” is a memory address.

Description

These intrinsic functions perform unaligned memory read operation where
__nds32__get_unaligned_dw gets a 64-bit data, nds32__get_unaligned_w gets a 32-bit
data,and _ nds32_ get _unaligned_hw gets a 16-bit data.

Privilege Level: ALL

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 128
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

A .
Andes Programming Guide for ISA V3 NDES

TECHMNOLOGY

Name
__nds32__isb

Syntax
void _ nds32__ ish@ e [\

~ N

(@

|
e B

Description | <& [ease

U DN)

This intrinsic inseFfs an ISB instruction into the instruction stream.
Privilege Level: ALL

Example

#include <nds32_intrinsic.h>
void func(void)

{
unsigned int psw=_ nds32_ mfsr(NDS32_SR _PSW); //get the content of PSW.
psw = psw | 0x00000040;
__nds32__mtsr(psw, NDS32_SR_PSW); //set PSW._IT bit.
_ nds32__isb(Q);
he

-
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 129
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- .
Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

Name

__nds32__i1sync

Syntax

void __ndsBZ__iéyncﬁunsigFedfht *a)

Where parameter “”J‘é’\’ 4s{atﬁ‘ir}$tfuiétion address for serialization.

o

Description

This intrinsic inserts an ISYNC instruction into the instruction stream.

Privilege Level: ALL

——
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 130
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggﬁ,

Name
_ nds32___jr_itoff

Syntax

void _ nds32__j r_itoff(unfigned int a)
Where parameter al is'an-instruction address to be jumped to.

Description

This intrinsic branches unconditionally to an instruction address a and clears the IT field of the
Processor Status Word (PSW) system register to turn off the instruction address translation
process in the MMU. This intrinsic function guarantees that fetching of the target instruction

will see PSW.IT as 0, thus not going through the address translation process.

Privilege Level: ALL

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 131
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggﬁ,

Name
_ nds32__jr_toff

Syntax

void _ nds32__ jr sgoffi(unsigned jint a)
|
Where parameter al is-ananstraction address to be jumped to.

Description

This intrinsic branches unconditionally to an instruction address a and clears the IT and DT
fields of the Processor Status Word (PSW) system register to turn off the instruction and data
address translation process in the MMU. This instruction guarantees that fetching of the target
instruction will see PSW.IT as 0 and PSW.DT as 0, thus not going through the address
translation process.

Privilege Level: ALL

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 132
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éuﬂQ_OEGsv

Name
__nds32__jral_iton

Syntax

void _ nds32__ jrak Fton(unsigned int a)
Where parameter “a*is-anfnstruction address to be jumped to.

Description

This intrinsic branches unconditionally to an instruction address a and sets the IT field of the
Processor Status Word (PSW) system register to turn on the instruction address translation
process in the MMU. The program address of the next sequential instruction (PC+4) is written
to Rt for the return of the function call. This intrinsic function guarantees that fetching of the
target instruction will see PSW.IT as 1, thus going through the address translation process.

Privilege Level: ALL

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 133
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éuﬂQ_OEGsv

Name
__nds32__jral_ton

Syntax

void _ nds32__ jradnton(unsigned int a)
Where parameter “a*is-anfnstruction address to be jumped to.

Description

This intrinsic branches unconditionally to an instruction address a and sets the IT and DT fields
of the Processor Status Word (PSW) system register to turn on the instruction and data address
translation process in the MMU. The program address of the next sequential instruction (PC+4)
is written to Rt for the return of the function call. This intrinsic function guarantees that fetching
of the target instruction will see PSW.IT as 1 and PSW.DT as 1, thus going through the address
translation process.

Privilege Level: ALL

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 134
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

Name
__nds32__msync*

Syntax

A. void _ndssz_msyﬁcfaj K
B. void _nds327_/misynci:_shtc‘)ﬁre’()
NCITCdoC
Description
This intrinsic inserts an MSYNC instruction into the instruction stream.
~_nds32__msync_all inserts an “MSYNC All” instruction into the instruction stream.

__nds32__msync_store inserts an “MSYNC Store” instruction into the instruction stream.

Privilege Level: ALL

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 135
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- .
Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

Name
__nds32__nop

Syntax

void _nd332_r16p() ‘ LA

Description - /\%‘{ CadsSe

This intrinsic inserts an NOP instruct/ion into the instruction stream.

Privilege Level: ALL

——
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 136
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- .
Andes Programming Guide for ISA V3 éﬂ&&g

Name
__nds32__put_unaligned_dw
_ nds32__ put_unaligned w
__nds32__ put _unaligned_hw

- N

of ol]

Syntax |

void _ nds32__pu) unaligneg dw(unsigned long long *a, unsigned long long data)
void _nds32_pu‘t_\urial\igried_\NQunsigned int *a, unsigned int data)

void _ nds32_ put _unaligned hw(unsigned short *a, unsigned short data)

Where:
Parameter “*a” is a memory address.

Parameter “data” is the data to be stored in *a.

Description

These intrinsic functions perform unaligned memory write operation where

__nds32__ put_unaligned_dw puts a 64-bit data, nds32_ put _unaligned_w puts a 32-bit
data, and _ nds32__ put_unaligned_hw puts a 16-bit data.

Privilege Level: ALL

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 137
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY
Name

__nds32__rotr

Syntax

unsigned int __pdsd2—rotrCunsigned int val, unsigned int ror)

of ol

Where:
val is the valudftheé fotated, &
ror is the rotation amount. g

Description
This intrinsic right-rotates the content of val. The rotation amount is specified by ror. If ror is
a constant, the ROTRI instruction will be inserted into the instruction stream. If ror is a variable,

the ROTR instruction will be inserted. The result is returned.

1. Ifrorisavariable, the rotation amount is specified by the low-order 5-bits of ror.
2. The case that constant ror > 31 is not allowed. If it occurs, compiler will generate an error

message of “the argument ror in _ nds32__rotri should be in the range 0-31".

Return Value

The _ nds32__ rotr intrinsic returns the value of val rotated by ror.
Privilege Level: ALL
Example

#include <nds32_intrinsic.h>
void func(void)

{
unsigned Int a=0x0000000F;
a = nds32_ rotr(a, 4); //Variable abecomes OxFO000000 after the right.
//rotation
s

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 138
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- .
Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

Name

__nds32__schedule _barrier

Syntax
void __ndsSZ__SbheduIe;baTrief()

Description }j \5‘{ Case

This intrinsic creates a point so that instructions before and after the point won’t be merged by
the compiler.

——
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 139
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- .
Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

Name

__nds32__setend_big
_ nds32__setend_little

Syntax (A {
void _ndsSZ_setench'i gé 41
void _ndsSZ_seFegd#ljtt\‘l,eQ‘

{ I\CTTT doT

N

Description

__nds32__setend_big sets the data endian mode to big endian in the PSW register.

__nds32__setend_little sets the data endian mode to little endian in the PSW register.

Privilege Level: ALL

Example

#include <nds32_intrinsic.h>
void Ffunc(void)

{
__nds32__setend big(); //set the data endian mode to big endian.
_ nds32__dsb(); //make sure the change in PSW_BE is seen by any following.
//1oad/store instructions.
s

——
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 140
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

A .
Andes Programming Guide for ISA V3 NDES

TECHMNOLOGY

Name

__nds32__return_address

Syntax

unsigned int ’nd532~~T§1 [pf&&dress()

‘ =
1ICIC

Description | <& [ease

— UO)

This intrinsic function returns the return address.
Privilege Level: ALL

Example
#include <nds32_intrinsic.h>
void func(void)
{

unsigned int Ip;

Ip = nds32_ return_address(); //1p is the return address of func.

-
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 141
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggﬁ,

Name
_ nds32__ret_itoff

Syntax
void __ndsBZ__ret_itoff(uPsighed int a)

Where parameter al is-ananstraction address to be jumped to.

Description

This intrinsic branches unconditionally to an instruction address a and clears the IT field of the
Processor Status Word (PSW) system register to turn off the instruction address translation
process in the MMU. This intrinsic function guarantees that fetching of the target instruction
will see PSW.IT as 0 and PSW.DT as 0, thus not going through the address translation process.

Privilege Level: ALL

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 142
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggﬁ,

Name
__nds32__ret_toff

Syntax

void __ndsBZ__ret_toff(unfigned int a)
Where parameter al is'an-instruction address to be jumped to.

Description

This intrinsic branches unconditionally to an instruction address a and also clears the IT and DT
fields of the Processor Status Word (PSW) system register to turn off the instruction and data
address translation process in the MMU. This intrinsic function guarantees that fetching of the
target instruction will see PSW.IT as 0 and PSW.DT as 0, thus not going through the address
translation process.

Privilege Level: ALL

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 143
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- .
Andes Programming Guide for ISA V3 Q.HREQ

Name

_nds32__set_current_sp

Syntax

void _ nds32_ etﬁcurren,rsp Gh5|gned int sp)

Description | <& [ease

\¥ A - B

This intrinsic function sets the current stack point value.
Privilege Level: ALL

Example

#include <nds32_intrinsic.h>
void func(void)

{
//adjust sp value to sp - 4
unsigned int sp;
sp = _ nds32__get_current_sp();
Sp = sp - 4;
_nds32__set_current_sp(sp);

be

-
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 144
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3

ANDES

TECHMNOLOGY

Name
__nds32___standby no_wake grant
__nds32__ standby wake grant
__nds32__ standby wait_done

]

Syntax
void __nds32__stamghy Ao-~wake, grant()
void __ndsSZ__stéﬁdby_wake_grant()
void _ nds32_ standby wait_done()

Description

__nds32__standby no_wake_grantinserts a “STANDBY no_wake grant” instruction into the

instruction stream.

__nds32___standby wake grant inserts a “STANDBY wake_grant” instruction into the

instruction stream.

__nds32__standby wait_done inserts a “STANDBY wait_done” instruction into the

instruction stream.

Privilege Level: The behaviors of _ nds32__ standby under different processor operating

modes are listed in the following table.

Privilege level Intrinsic function Andes instruction
__nhds32__standby no_wake grant STANDBY no_wake grant
User __nds32__standby wake grant STANDBY no_wake grant
__nhds32__standby wait_done STANDBY no_wake grant
__nds32__standby no_wake grant STANDBY no_wake grant
Superuser __nds32__standby wake grant STANDBY wake_grant
__nhds32__standby wait_done STANDBY wait_done

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 145
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 émgggf

Name
__nds32__sva

Syntax
unsigned int _[nds32-csya(int 4, int b)

Where parameter al and ‘b’ aréthe two input integer values to be calculated.

Description & Return Value

If adding a and b results in 32-bit 2’s complement arithmetic overflow, a result of 1 is returned;
otherwise, a result of O is returned.

Privilege Level: ALL

Example

#include <nds32_intrinsic.h>
void Ffunc(void)

{

int a = OX7FFFfFffT;

int b =1;

int c;

c = _nds32_ sva(a, b); //c =1
by

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 146
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 émgggf

Name
__nds32__svs

Syntax

unsigned int _[nds32-csys(int A, int b)
Where parameter al and ‘b’ aréthe two input integer values to be calculated.

Description & Return Value
If subtracting a and b results in 32-bit 2's complement arithmetic overflow, a result of 1 is
returned; otherwise, a result of O is returned.

Privilege Level: ALL

Example

#include <nds32_intrinsic.h>
void Ffunc(void)

{

int a = OX7FFFfFffT;

int b = -1;

int c;

c = _nds32 svs(a, b); //c =1
}

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 147
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3

ANDES

TECHRNOLOGY
Name

__nds32___syscall

Syntax

void _ nds32_ &yseakk const, ndigned int swid)
J1 J(L C fﬁ F
Where:

jrji(i‘\ { adaYafa
| -
swid

-

.o CT

. N\ ;
is a 15-bit unsigned constant value.

The case that swid > 32767 is not allowed. If it occurs, compiler would generate an error

message of “the argument swid in _ nds32__syscall should be in the range 0-32767".

Description

~_nds32_ syscall inserts a SYSCALL instruction into the instruction stream.

Privilege Level: All

I
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,

reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.
Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 148

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY
Name

_ _nds32___teqgz

_ nds32__tnez

_ nds32___trap

Syntax

void __ndsSZ__teﬁz(Qén§t;unsjgned int a, const unsigned int swid)
void __ndsSZ__tneﬁ(Cohst'unsigned int a, const unsigned int swid)

void _ nds32_ trap(const unsigned int swid)

Where:
parameter “a” is a 32-bit unsigned/unsigned integer variable.

parameter “swid” is a 15-bit constant value.

The case that swid > 32767 is not allowed. If it occurs, compiler would generate an error
message of “the argument swid in _ nds32__teqz/__nds32__tnez/__nds32__ trap should
be In the range 0-32767".

Description

Both nds32_ teqzand _ nds32__ tnez generate a conditional Trap exception while
__nds32__trap generates an unconditional Trap exception. _ nds32__ teqz generates a Trap
exception and transfers control to the Trap exception handler if aisequal to 0; _ nds32__ tnez
generates a Trap exception and transfers control to the Trap exception handler if a is not equal

to 0. The parameter swid is used to distinguish different trap features and usages.

Privilege Level: ALL

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 149
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3

ANDES

TECHMNOLOGY

Name
__nds32__wsbh

Syntax
unsigned int _;hds32;;wsbr(un§}gned int a)

Where parameter 3" jﬁﬁe’%‘nﬁufva‘riable to be swapped.

Description

The bytes within each halfword of a are swapped and the result is returned.

Return Value

The _ nds32__wsbh intrinsic returns the halfword swapped value of a.
Privilege Level: ALL

Example

#include <nds32_intrinsic.h>

void func(void)

{
unsigned int a = 0x03020100;
unsigned int b;
b = nds32 wsbh(a);
//b should have a value of 0x02030001

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 150

Andes Programming Guide for ISA V3 éﬂggﬁ,

12.2.4. Intrinsics for PE1 Instruction

The following table indicates the supported AndesCores for each intrinsic function introduced in

this section.

Intrinsic Function 7171 ¢ ‘ - Supported CPUs Page
__nds32__abs “y ~ | ~ [-Only AndesCores with V3 (but not with V3m/V3m+) architecture 152
__nds32__ave _ Only-AndesCores with V3 (but not with V3m/V3m+) architecture 153
_ nds32__bclr Only AndesCores with V3 (but not with V3m/V3m+) architecture 154
__nds32__ bset Only AndesCores with V3 (but not with V3m/V3m+) architecture 154
__nds32__ btgl Only AndesCores with V3 (but not with V3m/V3m+) architecture 154
__nds32__ btst Only AndesCores with V3 (but not with V3m/V3m+) architecture 154
_ nds32__clip Only AndesCores with V3 (but not with V3m/V3m+) architecture 156
_ nds32__clips Only AndesCores with V3 (but not with V3m/V3m+) architecture 157
_ nds32__clz Only AndesCores with V3 (but not with V3m/V3m+) architecture 159
_nds32__clo Only AndesCores with V3 (but not with V3m/V3m+) architecture 158

PEL ISA is configurable. For all AndesCores, the extension bit “CPU_VER[0]” indicates if PE1 ISA
is supported. If CPU_VER[O0] is set, PE1 intrinsic functions are supported. Otherwise, PE1
intrinsic functions are not supported. If you use PE1 intrinsic functions with an AndesCore
where CPU_VER[0] is not set, the core will generate a “Reserved Instruction Exception”.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 151
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3

ANDES

TECHMNOLOGY

Name
__nds32__abs

Syntax

int __ndsBZ__abé(intda)J

N\

Where parameter 3" jﬁﬁe’%‘npufiﬁteger value to be calculated.

Description

This intrinsic returns the absolute value of a.

Return Value

The nds32_ abs intrinsic returns the absolute value of a.

Privilege Level: ALL

Example

#include “nds32_intrinsic.h”
void func(void)

{

int a = -4;

int abs;

abs = nds32_ _abs(a); //compute the absolute value of a.
s

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 152

TECHMNOLOGY

- .
Andes Programming Guide for ISA V3 ANDES

Name
__nds32__ave

Syntax

int __nds32__aVé(int4a3iFt b)"

Where parameter 3" /aﬁd{“‘b” aréthe two input integer values to be calculated.

o

Description

This intrinsic returns the average of a and b.

Return Value

The nds32__ ave intrinsic returns the average of a and b.
Privilege Level: ALL

Example

#include <nds32_intrinsic.h>
void func(void)

{

int a = 4;

int b = 2;

int ave;

ave = nds32_ _ave(a, b); //compute the average of a and b.
by

——
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 153
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY
Name
__nds32__bclr
__nds32__ bset
__nds32__ btgl
__nds32__btst /" N
‘ 1 -)
Syntax D

unsigned int _;nh§32_;bci}(uhsjgned int a, const unsigned int pos)
unsigned Int _ nds32_ bset(unsigned int a, const unsigned Int pos)
unsigned Int _ nds32_ btgl(unsigned int a, const unsigned iInt pos)
unsigned int _ nds32_ btst(unsigned int a, const unsigned int pos)

Where:
Parameter “a” is the input 32-bit word.

Parameter “pos” is a 5-bit constant, which specifies the bit position for processing.

The case that pos > 31 is not allowed. If it occurs, compiler will generate an error message of
“the argument pos in _ nds32_ bclr/_nds32_ bset/ nds32_ btgl/_nds32_ btst
should be in the range 0-31".

Description

__nds32__ bclr clears an individual one bit from the value stored in a.
__nds32__ bset sets an individual one bit from the value stored in a.
__nds32__ btgl toggles one bit from the value stored in a.

__nds32__ btst tests one bit from the value stored in a.

The bit position for these operations is specified by pos. The result is returned.

Return Value

The intrinsics return the processed result from a.

Privilege Level: ALL

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 154

A g N
Andes Programming Guide for ISA V3 NDES

TECHNOLOGY
Example

#include <nds32_intrinsic.h>
void func_bclr(void)

{
;nsign @ﬁlchﬁz': FFF;
a = _nds32 _bclr(a, 31); //clear the MSB of a.
. "|Release
b
void func_bset(void)
{

unsigned int a = 0;

a = _ nds32__bset(a, 31); //set the MSB of a.
ks

void func_btgl(void)

{

unsigned int a = 0x80000000;
a = _ nds32__btgl(a, 31); //toggles the MSB of a.
be

void func_btst(void)
{

unsigned int a = 0;
a =

__nds32__btst(a, 31); //test the MSB of a. The tested result is 0.

I
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,

reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.
Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 155

- -
Andes Programming Guide for ISA V3 émgggf

Name
__nds32__clip

Syntax

unsigned int _;ﬁds32;;plif(inf\a, const unsigned int imm)
Where: Release
Parameter “a” is the input value. ’

Parameter “imm” is a 5-bit constant.

The case that imm > 31 is not allowed. If it occurs, compiler will generate an error message of

“the argument imm in _ nds32_ clip should be in the range 0-31".

Description
This intrinsic limits the value of a in a range between 2imm-1 and 0 and returns the limited

result. For example, if imm is O, the result should be always 0. If the value of a is negative, the
result is O as well.

Return Value

The _nds32__ clip intrinsic returns the clipped result from a.

Privilege Level: ALL

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 156
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- .
Andes Programming Guide for ISA V3 ANDES

TECHRNOLOGY
Name

__nds32__clips

Syntax

]

int _nds32_ cfips(int a,

|
Where: = %{ '

[\

copst unsigned int imm)

wio o)

Parameter “a” is the input value.

o

Parameter “imm” is a 5-bit constant.

The case that imm > 31 is not allowed. If it occurs, compiler will generate an error message of

“the argument imm in _ nds32 clips should be in the range 0-31".

Description

This intrinsic limits the value of a in a range between 2imm-1 and -2imm and returns the limited
result. For example, if imm is 3, the result should be between 7 and -8.

Return Value

The _ nds32__ clips intrinsic returns the clipped result from a.

Privilege Level: ALL

-
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,

reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.
Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 157

N
Andes Programming Guide for ISA V3 éﬂgggf

Name
__nds32__clo

Syntax

unsigned int __ndssz;;plo(unsigned int a)

Where parameter al ’is'tﬁe 32-bit input value.

Description
This intrinsic counts the number of successive ones leading from the most significant bit of a

and returns the result. For example, if bit 31 of a is 0, the result is 0. If a has a value of
OxFFFFFFFF, the result should be 32.

Return Value

The _ nds32__ clointrinsic returns the leading one counted result.

Privilege Level: ALL

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 158
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

N
Andes Programming Guide for ISA V3 éﬂgggf

Name
_ nds32__clz

Syntax

unsigned int __ndssz;;plz(unsigned int a)

Where parameter al ’is'tﬁe 32-bit input value.

Description
This intrinsic counts the number of successive zero leading from the most significant bit of a and

returns the result. For example, if bit 31 of a is 1, the result is 0. If a has a value of 0, the result
should be 32.

Return Value

The _nds32__ clz intrinsic returns the leading zero counted result.

Privilege Level: ALL

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 159
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

12.2.5. Intrinsics for PE2 Instructions

The following table indicates the supported AndesCores for each intrinsic function introduced in
this section.

Intrinsic Function anlle ‘ Supported CPUs Page
__Nnds32__bse ‘ Only.AndesCores with V3 (but not with V3m/V3m+) architecture 161
__nds32__bsp | Only-AndesCores with V3 (but not with V3m/V3m+) architecture 162
__nds32__ pbsad Only AndesCores with V3 (but not with V3m/V3m+) architecture 163
__nds32__ pbsada Only AndesCores with V3 (but not with V3m/V3m+) architecture 164

PE2 ISA is configurable. For all AndesCores, the extension bit “CPU_VER[2]” indicates if PE2
ISA is supported. If CPU_VER[2] is set, PE2 intrinsic functions are supported. Otherwise, PE2
intrinsic functions are not supported. If you use PE2 intrinsic functions with an AndesCore

where CPU_VER[2] is not set, the core will generate a “Reserved Instruction Exception”.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 160
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY
Name

__nds32__bse

Syntax

void _ nds32_ BbBSe(unsigned inty*t, unsigned int a, unsigned int *b)

Where: » P P

Parameter “a” is a 32-bitword to be extracted.

Parameter “*b” is the extraction configuration variable, which defines the number of bits
extracted and the distance between a(31) and the starting MSB bit position of
the extracted bits in a.

Parameter “*t” stores the extraction result.

Description

This intrinsic behaves as a BSE instruction. Since the extraction configuration variable (*b) and
the extraction result (*t) are pointers, compiler might generate some extra load/store
instructions to load/store the contents of *b and *t. If you have performance concern, use inline
assembly instead.

Return Value

None

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>
void func(void)

{
unsigned int a = OxXFOFOFOFO; //pattern to be extracted.
unsigned Int b = 0x00000300;
unsigned int r;
__nds32__ bse(&r, a, &b); //extract bit[31-24] of a.
//The value of r becomes 0x0000000F.
//The value of b becomes 0x00000324.
}

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 161

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY
Name

__nds32__bsp

Syntax

void _ nds32_ bsp(UNSTgned Thty*t, unsigned int a, unsigned int *b)

Where: SN PR

Parameter “a” lis'a‘32-bit\vord to-be inserted.

Parameter “*b” is the packing configuration variable, which defines the number of bits
inserted and the distance between the 31t bit and the starting MSB bit
position of the inserted bits in the packed result.

Parameter “*t” is the packing result.

Description

This intrinsic behaves as a BSP instruction. Since the packing configuration variable (*b) and the
packing result (*t) are pointers, compiler might generate some extra load/store instructions to
load/store the contents of *b and *t. If you have performance concern, use inline assembly
instead.

Return Value
None

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>
void func(void)

{
unsigned int a = 0x0000000F; //pattern to be packed.
unsigned int b = 0x00000300;
unsigned Int r = 0;
__nds32__bsp(&r, a, &b); //pack bit[7-0] from a to bit[31-24] of r.
//The value of r becomes 0xFO0000000.
//The value of b becomes 0x00000324.
}

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 162
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 émgggf

Name
__nds32__ pbsad

Syntax

unsigned int _;ﬁds32;;pbst(uﬁéigned int a, unsigned int b)
Where parameter|“3*afd ‘b arétheé two 32-bit data to be calculated.

Description
This intrinsic subtracts the four un-signed 8-bit elements of a from the four unsigned 8-bit

elements of b. The absolute value of each difference is added together and the result is returned.

Return Value

The nds32__ pbsad intrinsic returns the final absolute value.
Privilege Level: ALL

Example

#include <nds32_intrinsic.h>
void func(void)

{

unsigned Int a = 0x09070605;

unsigned int b = 0x04020301;

unsigned int r;

r = nds32_ pbsad(a, b); //The value of r becomes 17.
s

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 163
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 émgggf

Name
__nds32__pbsada

Syntax

unsigned int __nds32;;pbs?da(Uhsigned int acc, unsigned int a, unsigned int b)
Where: } \CE1CaASE
Parameter “a” and “b” are two 32-bit data to be calculated.

Parameter “acc” is the accumulation variable.

Description
This intrinsic subtracts the four un-signed 8-bit elements of a from the four unsigned 8-bit

elements of b. The absolute value of each difference is added together along with acc and the
accumulated result is returned.

Return Value

The nds32_ pbsada returns the final accumulated result.
Privilege Level: ALL

Example

#include <nds32_intrinsic.h>
void func(void)

{

unsigned int a = 0x09070605;

unsigned int b = 0x04020301;

unsigned Int r=1;

r = nds32_ pbsada(r, a, b); //The value of r becomes 18.
by

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 164
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3

ANDES

TECHMNOLOGY

12.2.6. Intrinsics for String

The following table indicates the supported AndesCores for each intrinsic function introduced in

this section.

Intrinsic Function anlle ‘ Supported CPUs Page
__nds32__ffb ‘ Qnly.AndesCores with V3 (but not with V3m/V3m+) architecture 166
__nds32__ ffmism | Only-AndesCores with V3 (but not with V3m/V3m+) architecture 168
_ nds32__flImism Only AndesCores with V3 (but not with V3m/V3m+) architecture 169

String ISA is configurable. For all AndesCores, the extension bit “CPU_VER[4]” indicates if String

ISA is supported. If CPU_VER[4] is set, String intrinsic functions are supported. Otherwise,

String intrinsic functions are not supported. If you use String intrinsic functions with an

AndesCore where CPU_VER[4] is not set, the core will generate a “Reserved Instruction

Exception”.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 165

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY
Name

__nds32___ffb

Syntax

int __nds32__ffb(unsignedintka, unsigned iInt b)

Where } \
Parameter “a” is the input word.
Parameter “b” is used to match each byte in parameter “a”.

Description

This intrinsic will find the first byte in a that matches b. If b is a constant, the FFBI instruction
will be inserted into the instruction stream. If b is a variable, the FFB instruction will be
inserted.

If b is a variable, the least significant byte in b is used to match each byte in a.

2. Ifbisaconstant, it is prohibited to have “b > 255.” If a violation occurs, compiler will
generate an error message of “the constant type argument b in _ nds32__ ffb should
be in the range 0-255".

Return Value

The nds32__ ffb intrinsic returns the location of the first byte in a that matches b. If a
matching byte is found, a non-zero position indication of the first matching byte based on the
current data endian (PSW.BE) mode is returned. If no matching byte is found, a zero is returned.
Please refer to the FFB/FFBI instruction in AndeStar Instruction Set Architecture Manual for

the detailed description about the return value.

Privilege Level: ALL

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 166

A g N
Andes Programming Guide for ISA V3 NDES

TECHNOLOGY
Example

#include <nds32_intrinsic.h>
void func(void)

{
//as mode i1s little endian.
unsignep ggpka d4c;
unsigned_int b = 0x0000003d;
int r;| Release
= T (a, //The value of r becomes -3.
s

I
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,

reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.
Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 167

Andes Programming Guide for ISA V3 éﬂggﬁ,

Name
__nds32___ffmism

Syntax

int __ndsBZ__ffmism(unsigPediht a, unsigned int b)

Where parameter “a™and ‘b” aré-the two words to be compared.

Description

Each byte in a is matched with each corresponding byte in b. If any mis-matching byte is found,
a non-zero position indication of the first mis-matching byte based on the current data endian
(PSW.BE) mode is returned. If no mis-matching byte is found, a zero is returned. Please refer to
the FFMISM instruction in AndeStar Instruction Set Architecture Manual for the detailed
description about the return value.

Return Value
The _ nds32__ ffmism intrinsic returns the location of the first byte in a that mismatches the

corresponding byte in b.
Privilege Level: ALL

Example

#include <nds32_intrinsic.h>
void func(void)
{
.. //assume data endian mode is little endian.
unsigned int a = Ox1b2a3d4c;
unsigned int b = 0x112a334c;
unsigned Int r;
r = nds32__ ffmism(a, b); //The value of r becomes -3.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 168
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggﬁ,

Name
__nds32___flmism

Syntax

int __ndsBZ__fImism(unsigPed int a, unsigned int b)

Where parameter “a™and ‘b” aré-the two words to be compared.

Description

Each byte in a is matched with each corresponding byte in b. If any mis-matching byte is found,
a non-zero position indication of the last mis-matching byte based on the current data endian
(PSW.BE) mode is returned. If no mis-matching byte is found, a zero is returned. Please refer to
the FLMISM instruction in AndeStar Instruction Set Architecture Manual for the detailed
description about the return value.

Return Value
The _nds32__ ffmism intrinsic returns the location of the last byte in a that mismatches the

corresponding byte in b.
Privilege Level: ALL

Example

#include <nds32_intrinsic.h>
void func(void)
{
.. //assume data endian mode is little endian.
unsigned int a = Ox1b2a3d4c;
unsigned int b = 0x112a334c;
unsigned Int r;
r = nds32__ flmism(a, b); //The value of r becomes -1.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 169
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

12.2.7. Intrinsics for FPU

FPU ISA is configurable. Currently, only N10, N13, N15, D10 and D15 can configure with FPU.
FPU intrinsic functions are supported if FUCOP_EXIST[O0], FUCOP_EXIST[31], CPU_VER[4], and
FUCOP_CTL[O] are s€t Otherw‘ise,'th\e AndesCore in use will generate a “Reserved Instruction

Exception” or a “FPU disabled ExCeption.”
‘ = = = =
Release

N

——
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 170
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 émgggf

Name

__nds32__ fcpynsd
__nds32__ fcpynss
__nds32__ fcpysd

__nds32__ fcpyss”

Syntax NDAalaace

double __ndsSZ;_%épynéd(dBub]e/a, double b)
float _ nds32_ fcpynss(float a, float b)
double _ nds32_ fcpysd(double a, double b)
float _ nds32_ fcpyss(float a, float b)

Where:
Parameter “a” is the input floating point variable whose value will be copied.
Parameter “b” is the input floating point variable whose sign will be copied.

Description
Both _ nds32_ fcpynsd and _ nds32__ fcpynss negate and copy the sign of b to a to form a
new value.

Both nds32_ fcpysdand _nds32_ fcpyss copy the sign of b to a to form a new value.

Return Value
Both _ nds32_ fcpynsd and _ nds32__ fcpynss return the negating and copying result.
Both nds32_ fcpysdand _ nds32_ fcpyss return the copying result.

Privilege Level: ALL

Example

#include <nds32_intrinsic.h>
void func_fcpynsd (void)

{

double a = -1.5;

doublle b = -1.3;

r = nds32_ fcpynsd(a, b); //The value of r becomes 1.5.
+

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 171
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

A g N
Andes Programming Guide for ISA V3 NDES

TECHMNOLOGY

void func_fcpynss (void)
{

float a = -1.5;
float b = -1.3;
float r;

- S@_‘ﬁﬁ:@/pafa b); //The value of r becomes 1.5.
}
Release

#include <n

-h>

void func_fcpysd (void)
{

double a = -1.5;

doublle b = 1.3;

double r;

r = nds32_ fcpysd(a, b);
}

//The value of r becomes 1.5.

void func_fcpyss (void)
{
float a = -1.5;
float b = 1.3;
float r;

r = _nds32__ fcpyss(a, b); //The value of r becomes 1.5.
}

I
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,

reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.
Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 172

Andes Programming Guide for ISA V3 Q.HREQ

Name
__nds32___fmfcfg

Syntax
unsigned int _[nds32-cfmf fg 5\
JtfieTal

Description {‘}&Ejﬂﬁﬁq”i”‘

- A o’

'ThEintﬂnsmreadgandreturnsthecontentofFPCFG.

Return Value

The nds32_ fmfFcsr intrinsic returns the content of FPCFG.
Privilege Level: ALL

Example

#include <nds32_intrinsic.h>
void func(void)
{
//this function checks if the SP extension exists.
unsigned int fpcfg;
unsigned int sp_exists;
fpcfg = nds32_ fmfcfg(); //read fpcfg.
sp_exists = fpcfg & Ox1;
it (sp_exists)
printf(““SP extension exists\n”);

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 173
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- .
Andes Programming Guide for ISA V3 QQQEQ

Name
__nds32___fmfcsr

Syntax
unsigned int _[(nds32:cfmfcsr()
et

Description | <& { ease

This intrinsic reads\‘and returns the content of FPCSR.

Return Value

The nds32_ fmFcsr intrinsic returns the content of FPCSR.
Privilege Level: ALL

Example

#include <nds32_intrinsic.h>
void func(void)

{
//this function set FPU to round to zero mode.
unsigned iInt fpcsr;
fpcsr = nds32_ fmfcsr(); //read fpcsr
fpcsr = (fpcsr & OxFFFFFfFfc) | 3;
__nds32__ fmtcsr(fpcsr); //write fpcsr
}

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 174
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- .
Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

Name
__nds32___fmtcsr

Syntax

void _ndsBZ_f%tcsr(unsiPned Jint fpcsr)

Where: }7 \ ;{ ease
fpcsr is the value to be transferred to FPCSR.
Description

This intrinsic stores the value of fpcsr into FPCSR.

Privilege Level: ALL

Example

Seealso nds32__ fmtcsr.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 175
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3

ANDES

TECHMNOLOGY

12.2.8. Intrinsics for TLBOP

For each intrinsic function in this section, the following table indicates the supported memory

management types.

Intrinsi¢ Fuhcti;)r‘{ | Memory Management Types Page
__nds32__tlbop_{tys, ~ ~ MMU, MPU, SMPU 177
_ndS32_t|bOp_tW‘I’\ "MMU, MPU, SMPU 178
__nds32__tlbop_rwr MMU 179
__nds32__tlbop_rwlk MMU 180
_ nds32___tlbop_unlk MMU 181
__nds32__tlbop_pb MMU, SMPU 182
__nds32__tlbop_inv MMU 184
__nds32___tlbop_flua MMU 185

The memory management types are configurable for all AndesCores. The configuration bits and

supported CPUs for each memory management type are listed below:

Memory Management Types

Configuration Bits

Supported CPUs

N6, N7, N8, E8, N9, N10, N13, N15,

MMU_CFG.MMPV >= 16

No management MMU_CFG.MMPS = O
D10, D15

MMU MMU_CFG.MMPS = 2 N10, N13, N15, D10, D15
MMU_CFG.MMPS = 1 and

MPU N10, N13, N15, D10, D15
MMU_CFG.MMPV < 16
MMU_CFG.MMPS = 1 and

SMPU S8

The intrinsic function descriptions in this section assume the AndesCore in use has MMU as its

memory management type.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 176

Andes Programming Guide for ISA V3 éﬂggﬁ,

Name
__nds32__tlbop_trd (TLB Target Read)

Syntax
void __nd532__tlbep:tfd(Uﬁsigﬂed int a)
|

where parameter fa” is the TLB

|
Description ‘

entry number to be read.

This intrinsic reads a specified entry in the software-visible portion of the TLB structure. The
specified entry is indicated by a. The read result is placed in the TLB_VPN, TLB_DATA, and
TLB_MISC registers.

The TLB entry number for a non-fully-associative N sets K ways TLB cache is as follows:

31 log2(N*K) Log2(N*K)-1 log2(N) Log2(N)-1 0

Ignored Way number Set number

Important: Since the TLB_MISC register contains the current process’s Context ID and Access
Page Size information, any use of this intrinsic function is required to save/restore the TLB_MISC
register if you want the current process to run correctly right after this operation.

Privilege Level: Superuser and above
Exceptions: Privilege Instruction

Example

#include <nds32_intrinsic.h>
void func(void)

{

unsigned int rd _num, tlb_out;
//prepare read entry number.

__nds32__tlbop_ trd(rd_num); //read TLB.

_ nds32__dsb(); //data serialization barrier.

tlb_out = nds32_ mfsr(NDS32_SR_TLB VPN); //move read result to tlb_out.
}

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 177
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggﬁ,

Name
__nds32__ _tlbop_twr (TLB Target Write)

Syntax
void __nd532__tlbep:twf(Uﬁsigﬂed int a)
|

where parameter fa” is the TLB

entry number to be written.

Description

This intrinsic writes a specified entry in the software-visible portion of the TLB structure. The
entry is indicated by a. The other write operands are in the TLB_VPN, TLB_DATA, and TLB_MISC
registers.

The TLB entry number for a non-fully-associative N sets K ways TLB cache is as follows:

31 log2(N*K) Log2(N*K)-1 log2(N) Log2(N)-1 0

Ignored Way number Set number

If the selected target entry is locked, this intrinsic will overwrite the locked entry and clear the
locked flag.

Privilege Level: Superuser and above
Exceptions: Privilege Instruction

Example

#include <nds32_intrinsic.h>
void func(void)

{

unsigned int w_num;

//prepare write contents into TLB VPN, TLB DATA, TLB MISC.
//prepare write entry number into w_num.

_ nds32__ tlbop_twr(rd_num); //write TLB.
__nds32__isb(); //inst serialization barrier.

}

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 178
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggﬁ,

Name
__nds32___tlbop_rwr (TLB Random Write)

Syntax

void __nd332__tlbop_kWr(ursigned int a)
\
where parameter fa” isthe'data to be written into the TLB_DATA portion of the TLB.

Description

This intrinsic writes a hardware-determined random TLB way in a set determined by the VA (in
TLB_VPN) and page size (in TLB_MISC) in the software-visible portion of the TLB structure. The
input variable “a” specifies the data that will be written into the TLB_DATA portion of the TLB
structure. The other write operands are in the TLB_VPN and TLB_MISC registers.

If the ways in the specified set are all locked during the write operation of this instruction,
depending on the setting in the TBALCK field of the MMU Control system register (MMU_CTL), this
intrinsic may generate a precise or an imprecise “Data Machine Error” exception. Note that the

default value of the TBALCK is to generate the exception.

Privilege Level: Superuser and above
Exceptions: Privilege Instruction, Data Machine Error

Example

#include <nds32_intrinsic.h>
void func(void)

{

unsigned Int pte_addr;

//TLB_VPN and TLB_MISC has been preset.
//prepare PTE address into pte_addr.

__nds32__ _tlbop_rwr(pte_addr); //write TLB.
_ nds32__isb(); //inst serialization barrier.

}

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 179
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éuﬂQ_OEGsv

Name
__nds32__tlbop_rwlk (TLB Random Write and Lock)

Syntax

void _ nds32__ tlmopirwlk(uasiigned int a)

where parameter fa” isthe'data to be written into TLB_DATA portion of the TLB.

Description

Similarto __nds32__ tlbop_rwr, this intrinsic writes a hardware-determined random TLB way
in a set determined by the VA (in TLB_VPN) and page size (in TLB_MISC) in the software-visible
portion of the TLB structure. In addition to the write operation, this intrinsic also locks the TLB
entry.

If the ways in the specified set are all locked during the write operation of this instruction,
depending on the setting in the TBALCK field of the MMU Control system register (MMU_CTL), this
intrinsic may generate a precise or an imprecise “Data Machine Error” exception. Note that the
default value of the TBALCK is to generate the exception.

Privilege Level: Superuser and above

Exceptions: Privilege Instruction, Data Machine Error

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 180
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

Name
__nds32__tlbop_unlk (TLB Unlock)

Syntax

void __ndsSZ__thOp_Uh1k(Pnsighed int a)
where parameter fa” is:a virtual address.

Description

This intrinsic unlocks a TLB entry if the VA in the input variable “a” matches the VPN of a set
determined by the VA (in “a”) and page size (in TLB_MISC).

Privilege Level: Superuser and above

Exceptions: Privilege Instruction

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 181
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂgisv

Name
__nds32__tlbop_pb (TLB Probe)

Syntax
void _ nds32__ tlhop{pb(unsighed int a)

where parameter fa” is.a virtual address.

Description

This intrinsic searches all TLB structures (software-visible and software-invisible) for a specified
VA in the input variable “a” and generates an entry number where the VA matches the VPN in
that entry. The search result is returned and has the following format:

31 30 29 28 n n-1 0

NF HW SW Reserved Entry #

If the VA can be found in the software-visible part of the TLB, the “sw” bit will be set. If the VA
can be found in the software-invisible part of the TLB, the “hw” bit will be set. And if the VA
cannot be found in either the software-visible or software-invisible part of the TLB, the “nf” bit

will be set.

The TLB entry number for the non-fully-associative N sets K ways TLB cache is as follows:

Log2(N*K)-1 log2(N) Log2(N)-1 0

Way number Set number

If this instruction encounters a multiple match condition when searching the TLB, a precise

“Data Machine Error” exception will be generated.

Privilege Level: Superuser and above

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 182
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

Exceptions: Privilege Instruction

Example

#include <nds32 intrinsic.h>

\{/oid func o@),ﬁ;lCIaI
'lfnsi nRére)égiet b _ent _num;

//prepare va into pb_va.

tlb_ent_num =

__nds32__tlbop _pb(inv_va);//probe TLB entry information
//examine tlb_ent_num.
he

I
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed

reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. Page 183
Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggﬁ,

Name
__nds32__tlbop_inv (TLB Invalidate VA)

Syntax

void __nd332__tlbop_ihv(ursigned int a)
\
where parameter fa” isia virtual address.

Description

This intrinsic function flushes the TLB entry that contains the VA in the input variable “a” and
the page size specified in the TLB_MISC register (software-visible and software-invisible) except
the locked TLB entries. The match condition also involves the “G” bit of a PTE entry and the CID
field of the TLB_MISC register. Their matching logic is as follows:

® If“G”isasserted, CID is not part of the match condition.

® |f “G” is not asserted, CID is part of the match condition.

If this intrinsic encounters a multiple match condition when searching the TLB, all matched
entries should be invalidated and no “Data Machine Error” exception will be generated.

Privilege Level: Superuser and above
Exceptions: Privilege Instruction

Example

#include <nds32_intrinsic.h>
void func(void)

{

unsigned int inv_va;
//prepare va into inv_va.
__nds32__ tlhlbop_inv(inv_va); //invalidate TLB entries containing unlk va.

__nds32__isb(); //inst serialization barrier

}

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 184
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- .
Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

Name

~_nds32__tlbop_flua (TLB Invalidate All)

Syntax
void __nds32__tlbdp+fan(?; I

o N

RDAalaacoe
Description T \7‘{ wie oL
This intrinsic invalidates all TLB entries (software-visible and software-invisible) except the
locked TLB entries.

Privilege Level: Superuser and above
Exceptions: Privilege Instruction

Example

#include <nds32_intrinsic.h>

void func(void)

{

__nds32__ tlhlbop_flua(); //write TLB.

_ nds32__isb(); //inst serialization barrier.

}

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 185
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggﬁ,

12.2.9. Intrinsics for Saturation ISA

Saturation ISA is configurable. For all AndesCores, the extension bit “CPU_VER[5]” indicates if
Saturation ISA is supported. If CPU_VER[5] is set, Saturation intrinsic functions are supported.

Otherwise, Saturation intrinsic “functions are not supported. If you use Saturation intrinsic

functions with an AndesCore Where CPU_VER[5] is not set, the core will generate a “Reserved
Instruction Exceptldn

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 186
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- .
Andes Programming Guide for ISA V3 émgggf

Name
__nds32__kaddw

Syntax

int _ nds32__k&ddw(int i int B)

Where parameter 3" /aﬁd{“‘b” aré4wo input integer values to be calculated.

o

Description

__nds32___kaddw adds the signed variables of a and b with Q31 saturation.

Return Value

__nds32___kaddw returns the calculation results. If saturation occurs, PSW.0V will be set.
Privilege Level: ALL

Example

#include <nds32_intrinsic.h>
void func(void)

{

int a = OX7FFFfFffT;

int b = 2;

int c;

c = nds32_ kaddw(a, b); //c = Ox7FFffffff and PSW.OV will be set.
+

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 187
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- .
Andes Programming Guide for ISA V3 émgggf

Name
__nds32___ksubw

Syntax

int _ nds32__kéubw(int i int B

Where parameter 3" /aﬁd{“‘b” aré4wo input integer values to be calculated.

o

Description

__nds32__ ksubw subtracts signed variables a and b with Q31 saturation.

Return Value

__nds32___ksubw returns the calculation results. If saturation occurs, PSW.0V will be set.
Privilege Level: ALL

Example

#include <nds32_intrinsic.h>
void func(void)

{

int a = OX7FFfFfFffT;

int b = -2;

int c;

c = nds32_ ksubw(a, b); //c = Ox7Ffffffff and PSW.OV will be set.
+

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 188
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- .
Andes Programming Guide for ISA V3 émgggf

Name
__nds32___kaddh

Syntax

int _ nds32_ k4ddh(int a‘ int B

Where parameter 3" /aﬁd{“‘b” aré4wo input integer values to be calculated.

o

Description
__nds32__kaddh adds signed variables a and b with Q15 saturation.

Return Value

__nds32___kaddh returns the calculation results. If saturation occurs, PSW.0V will be set.
Privilege Level: ALL

Example

#include <nds32_intrinsic.h>
void func(void)

{

int a = OxX7fff;

int b = 2;

int c;

c = nds32_ kaddh(a, b); //c = Ox7fff and PSW.OV will be set.
}

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 189
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- .
Andes Programming Guide for ISA V3 émgggf

Name
__nds32___ksubh

Syntax

int _ nds32_ kéubh(int a‘ int B

Where parameter 3" /aﬁd{“‘b” aré4wo input integer values to be calculated.

o

Description

__nds32__ksubh subtracts signed variables a and b with Q15 saturation.

Return Value

__nds32__ksubh returns the calculation results. If saturation occurs, PSW.0V will be set.
Privilege Level: ALL

Example

#include <nds32_intrinsic.h>
void func(void)

{

int a = OxX7fff;

int b = -2;

int c;

c = _nds32_ ksubh(a, b); //c = Ox7fff and PSW.OV will be set.
}

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 190
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggﬁ,

Name

__nds32___kdmbb
__nds32__kdmbt
_nds32___kdmtb
__nds32__ kdmtt

int __ndsSZ__kdmbb(uﬁsighed It a, unsigned int b)
int _ nds32__kdmb&¢Cunstgred—iat a, unsigned int b)

int _ nds32_ kdmtb(unsigned int a, unsigned int b)
int _ nds32_ kdmtt(unsigned int a, unsigned int b)

Syntax

Where parameter “a” and “b” are two 32-bit input variables to be calculated.

Description

Multiply the signed Q15 integer contents of two 16-bit data in the corresponding portion of the
two 32-bit variables (a and b) and then double and saturate the Q31 result. When both Q15 input
variables are 0x8000, saturation occurs. In this case, the result will be saturated to Ox7FFFFFFF
and PSW.0OV will be set.

For the inputs of the multiply operation, nds32__kdmbb uses the bottom 16-bit Q15 contents
ofaand b, nds32_ kdmbt uses bottom 16-bit Q15 content of a and top 16-bit Q15 content of b,
__nds32___kdmtb uses top 16-bit Q15 content of a and bottom 16-bit Q15 content of b, and
__nds32___kdmtt uses the top 16-bit Q15 contents of a and b.

Return Value
These intrinsics return the Q31 result. If saturation occurs, PSW.0V will be set.

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>
void func(void)

{

unsigned Int a = 0x8000;

unsigned int b = 0x8000;

int c;

c = nds32_ kdmbb(a, b); //c = Ox7FfFffffff and PSW.OV will be set.
}

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 191

Andes Programming Guide for ISA V3 éﬂggﬁ,

Name

__nds32___khmbb
__nds32__khmbt
_nds32___khmtb
__nds32___khmtt

Syntax |

int __ndsSZ__khme(unsigned int a, unsigned int b)
int _ nds32_ khmbtCunasighed—iaAt a, unsigned int b)
int _ nds32_ khmtb(unsigned int a, unsigned int b)
int _ nds32__khmtt(unsigned int a, unsigned int b)

Where parameter “a” and “b” are two 32-bit input variables to be calculated.

Description

Multiply the signed Q15 integer contents of two 16-bit data in the corresponding portion of the
two 32-bit variables (a and b) and then right-shift 15 bits to turn the Q30 result into a Q15
number and saturate the Q15 number as the return value. When both Q15 input variables are
0x8000, saturation occurs. In this case, the result will be saturated to Ox7FFF and PSW.0V will be

set.

For the inputs of the multiply operation, nds32__khmbb uses the bottom 16-bit Q15 contents
ofaand b, nds32_khmbt uses bottom 16-bit Q15 content of a and top 16-bit Q15 content of b,
__nds32___khmtb uses top 16-bit Q15 content of a and bottom 16-bit Q15 content of b, and
__nds32___khmtt uses the top 16-bit Q15 contents of a and b.

Return Value
These intrinsics return the saturated Q15 result. If saturation occurs, PSW. 0V will be set.

Privilege Level: ALL

Example
#include <nds32_intrinsic.h>
void func(void)

{

unsigned iInt a = 0x8000;

unsigned int b = 0x8000;

int c;

c = _nds32_ khmbb(a, b); //c = Ox7fff and PSW.0OV will be set.
}

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 192

Andes Programming Guide for ISA V3 éﬂggﬁ,

Name
__nds32___kslraw

Syntax

int __nds32__kslraw(int,ar signed char b)

Where: }
Parameter “a” is the input integer to be shifted.
Parameter “b” is the shift amount.

Description

__nds32__kslraw performs logical left or arithmetic right shift operation with Q31 saturation.
The content of a is left-shifted logically or right-shifted arithmetically based on the value of b. A
positive b means logical left shift and a negative b means arithmetic right shift. The shift amount
is the absolute value of b. The shifted result is saturated to a Q31 number, mainly for the

left-shifted result. If saturation occurs, PSW.0V will be set.

Return Value

__nds32___kslraw returns the Q31 result. If saturation occurs, PSW.0V will be set.
Privilege Level: ALL

Example

#include <nds32_intrinsic.h>
void func(void)

{

int a = OX7FFFFFFO;

signed char b = 1;

int c;

c = _ nds32__kslraw(a, b); //c = OX7fffffff and PSW.OV will be set.
he

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 193
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

o A
Andes Programming Guide for ISA V3 éﬂ&ﬁé

Name
__nds32___rdov

Syntax ’
unsigned int ﬁnd532=ﬂ¥gpv() \
otficial

\ 9 o

Description & Retd én \alies /6‘/
This intrinsic funcﬁon returns OV bit.

Privilege Level: ALL

Example

#include <nds32_intrinsic.h>
void func(void)
{
int a = OX7FFFfffO;
signed char b = 1;
int c;
unsigned int d;
c = _nds32_ kslraw(a, b); //c
__nds32__dsb(Q;
d = __nds32__rdov(Q); //d =1

OX7FFFFFff and PSW.OV will be set.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 194
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- i
Andes Programming Guide for ISA V3 éﬂ&ﬁé

Name
__nds32__clrov

Syntax

void __nd332__‘lrov€35L,ﬁﬁ,ﬁ{
JITICIA

Description | h@{@? Se

This intrinsic function clears PSW.0V,
Privilege Level: ALL

Example

#include <nds32_intrinsic.h>
void func(void)
{
int a = OX7FFFfffO;
signed char b = 1;
int c;
unsigned int d, e;
c = _nds32_ kslraw(a, b); //c = OxX7fFfFffff and PSW.OV will be set.
_ nds32__dsb(Q);
d = _nds32__rdov(Q); //d
__nds32__clrov(Q);
_ nds32__dsb(Q;
e = _ nds32__rdov(Q); //e

1
=

1
=

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 195
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3

ANDES

TECHMNOLOGY

12.2.10. Intrinsics for Interrupt
The following table indicates the supported AndesCores for each intrinsic function introduced in
this section.

Intrinsi¢ Fuactj%ﬁ C J (1/\ [] Supported CPUs Page
_nds32_setgie_qiigsyi laace All AndesCores 197
_nds32_setgié§én R AII AndesCores 197
__nds32__gie_dis All AndesCores 198
__nds32__gie_en All AndesCores 198
__nds32__enable_int All AndesCores 199
__nds32__disable_int All AndesCores 199
__nds32__set_pending_swint All AndesCores 201
__nds32__clr_pending_swint All AndesCores 201
__nds32__clr_pending_hwint All AndesCores 202
__nds32__get_pending_int All AndesCores 204
__nds32__get_all_pending_int All AndesCores 206
__nds32__set_int_priority All AndesCores 207
__nds32__get_int_priority All AndesCores 207
__nds32__get_trig_type All AndesCores 209

Page 196

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 émgggf

Name
__nds32__setgie _dis
__nds32__setgie_en

Syntax L
void _ndsBZ_setgie_disé
void _ndsSZ_sng[e;ep() ~ A

Description
__nds32__setgie_dis disables global interrupts (won’t take effect immediately).

__nds32__setgie_en enables global interrupts (won't take effect immediately).

These two intrinsic functions generate the SETGIE instruction. You need to further use
__nds32__dsb to make sure the change in PSW.GIE is seen by the subsequent instruction.
Besides PSW.GIE, if you want to modify some other system registers at the same time, these two
intrinsic functions will also provide better performance than _ nds32_gie dis and

__nds32__gie_en.
Privilege Level: Superuser and above

Example

#include <nds32_intrinsic.h>
void func(void)

{

_ nds32__setgie _dis(); //disable global interrupt.

{other codes to modify system register}

__nds32__dsb(); //make sure the new PSW.GIE value and the modified SR values
are seen by any following instructions.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 197
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

Name
_ _nds32__gie_dis
__nds32__gie_en

Syntax T

void _ nds32__ gie=dis(
void _nds32_gi“e_en()r

Description

__nds32__gie_dis disables global interrupts (will take effect immediately).

__nds32__gie_en enables global interrupts (will take effect immediately).

These two intrinsic functions generate a SETGIE instruction and a DSB instruction. The change
in PSW.GIE takes effect immediately.

Privilege Level: Superuser and above

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 198
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- i
Andes Programming Guide for ISA V3 éﬂ&ﬁé

Name

__nds32__enable_int
__nds32_ disable_int

Syntax (A£6: ~ial |

void _ nds32__ nabléi@ﬁt(gﬁhL ds32_intrinsic int_id)

void nds32 iSi Ant(endm inds32_intrinsic int_id
_ —qr %@?{%‘nﬁ; C) - 1D

Description
__nds32__enable_int enables an interrupt or exception specified by “int_id”.

__nds32__disable_intdisables an interrupt or exception specified by “int_id”.

The change in INT_MASK and INT_MASK2 will be seen by the code after the intrinsic function

The following table lists all maskable interrupts or exceptions.

Value of “int_id” Interrupt
NDS32_INT_HO HWO
NDS32_INT_H1 HW1
NDS32_INT_H2 HW2
NDS32_INT_H3 HW3
NDS32_INT_H4 HW4
NDS32_INT_H5 HW5
NDS32_INT_H6 HW6
NDS32_INT_H7 HW7
NDS32_INT_H8 HW8
NDS32_INT_H9 HWO
NDS32_INT_H10 HW10
NDS32_INT_H11 HW11
NDS32_INT_H12 HW12
NDS32_INT_H13 HW13

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 199
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY
Value of “int_id” Interrupt

NDS32_INT_H14 HW14

NDS32_INT_H15 HW15

NDS32_INT _H16 [O ﬁ:I I I HW16

NDS32_INT_H17 HW17

NDS32_ INT_H18 \He | ease | s

NDS32_INT_H19 HW19

NDS32_INT_H20 HW20

NDS32_INT_H21 HW21

NDS32_INT_H22 HW22

NDS32_INT_H23 HW23

NDS32_INT_H24 HW24

NDS32_INT_H25 HW25

NDS32_INT_H26 HW26

NDS32_INT_H27 HW27

NDS32_INT_H28 HW28

NDS32_INT_H29 HW29

NDS32_INT_H30 HW30

NDS32_INT_H31 HW31

NDS32_ INT_SWI Software interrupt
All zero opcode reserved

NDS32_INT_ALZ))]
instruction exception

NDS32_ INT_IDIVZE Arithmetic exception (DIV by 0)
Default single stepping

NDS32_INT_DSSIM]
interrupt

Privilege Level: Superuser and above

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 200

Andes Programming Guide for ISA V3 éﬂggﬁ,

Name

__nds32__set pending_swint
_nds32__clr_pending_swint

Syntax TPy
void _ nds32__set-pendi ng‘_swi nt(O)
void _ nds32_ ¢l ‘r_pehdi ng swint(

Description

__nds32__set_pending_swint sets the pending status for the software interrupt (i.e., triggers
the software interrupt).

_nds32__clr_pending_swint clears the pending status for the software interrupt (i.e., clears
the software interrupt).

Note that these two functions are specifically designed for the software interrupt only and no
parameter is needed. For HW interrupts, please use _ nds32__clr_pending_hwint(int_id)
instead.

This update of status in INT_PEND will be seen by the code after the intrinsic function.

Privilege Level: Superuser and above

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 201
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂgisv

Name
~_nds32__clr_pending_hwint

Syntax
void _ nds32__ ¢lg=pending hwint(enum nds32_intrinsic int_id)

Description

__nds32__clr_pending—hwimnt—cledrs the pending status of a HW interrupt specified by
“int_id” (located in INT_PEND and INT_PEND2). Note that this intrinsic function is designed
only to clear edge-triggered interrupts. In contrast, for level-triggered interrupts, the interrupt
pending status must be cleared from the devices directly and then this new clear status will
automatically propagate to the pending status registers. Consequently, there is no need to clear

the pending status of level-triggered interrupts.

Also note that you should not use this intrinsic function during normal operation because HW
will automatically clear the pending status for you when an edge-triggered interrupt is serviced.
Therefore, this intrinsic function is only used to clear pending bits when you initialize or
reprogram the interrupt controller and interrupt source devices. This clearance is needed

because pending bits can be accidentally set by glitches or noise before proper initialization.

This update of pending status in INT_PEND and INT_PEND2 will be seen by the code after the

intrinsic function.

The possible values for “int_id” are listed in the following table.

Value of “int_id” Interrupt
NDS32_INT_HO HWO
NDS32_INT_H1 HW1
NDS32_INT_H2 HW2
NDS32_INT_H3 HW3
NDS32_INT_H4 HW4
NDS32_INT_H5 HWS
NDS32_INT_H6 HW6

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 202
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3

ANDES

TECHMNOLOGY

Value of “int_id” Interrupt
NDS32_INT_H7 HW7
NDS32_INT_H8 HW8
NDS32 INT HO [/ O ﬁ:I I I HW9
NDS32_INT_H10 HW10
NDS32_ INT_H11 \He | ease
NDS32_INT_H12 HW12
NDS32_INT_H13 HW13
NDS32_INT_H14 HW14
NDS32_INT_H15 HW15
NDS32_INT_H16 HW16
NDS32_INT_H17 HW17
NDS32_INT_H18 HW18
NDS32_INT_H19 HW19
NDS32_INT_H20 HW20
NDS32_INT_H21 HW21
NDS32_INT_H22 HW22
NDS32_INT_H23 HW23
NDS32_INT_H24 HW24
NDS32_INT_H25 HW25
NDS32_INT_H26 HW26
NDS32_INT_H27 HW27
NDS32_INT_H28 HW28
NDS32_INT_H29 HW29
NDS32_INT_H30 HW30
NDS32_INT_H31 HW31

Privilege Level: Superuser and above

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 203

Andes Programming Guide for ISA V3 éﬂggé

Name
__nds32__get_pending_int

Syntax

unsigned int ng_int(enum nds32_intrinsic int_id)

Description
__nds32__get p
INT_PEND and INT_PEND2).

the pending status of the interrupt “int_id” (located in

The possible values for “int_id” are listed in the following table.

Value of “int_id” Interrupt
NDS32_INT_HO HWO
NDS32_INT_H1 HW1
NDS32_INT_H2 HW2
NDS32_INT_H3 HW3
NDS32_INT_H4 HW4
NDS32_INT_H5 HW5
NDS32_INT_H6 HW6
NDS32_INT_H7 HW7
NDS32_INT_H8 HW8
NDS32_INT_H9 HW9
NDS32_INT_H10 HW10
NDS32_INT_H11 HW11
NDS32_INT_H12 HW12
NDS32_INT_H13 HW13
NDS32_INT_H14 HW14
NDS32_INT_H15 HW15
NDS32_INT_H16 HW16
NDS32_INT_H17 HW17

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 204
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY
Value of “int_id” Interrupt
NDS32_INT_H18 HW18
NDS32_INT_H19 HW19
NDS32_INT_H20 [/ O ﬁ:I I I HW20
NDS32_INT_H21 HW21
NDS32_INT_H22 \He | ease w2
NDS32_INT_H23 HW23
NDS32_INT_H24 HW24
NDS32_INT_H25 HW25
NDS32_INT_H26 HW26
NDS32_INT_H27 HW27
NDS32_INT_H28 HW28
NDS32_INT_H29 HW29
NDS32_INT_H30 HW30
NDS32_INT_H31 HW31
NDS32_ INT_SWI Software interrupt

Privilege Level: Superuser and above

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 205
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

Name
__nds32__get_all _pending_int

Syntax

unsigned int __ndsSZ;;getLalI;pending_int()

Description »

N

__nds32__get_alN—pendi ng_i nt-is'deprecated due to lack of extensibility, so it should not be
used. For backward compatibility, it only returns the pending status specified in Interrupt

Pending Register (INT_PEND), which consists of only the first 16 HW interrupts (0O ~ 15) and a
software interrupt.

Privilege Level: Superuser and above

——
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 206
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

N
Andes Programming Guide for ISA V3 éﬂgggf

Name
__nds32__set _int_priority
_nds32__get_int_priority

Syntax

void __nds32__set_int_pfibfity(enum nds32_intrinsic int_id, unsigned int prio)
unsigned int _[nes32) get int priority(enum nds32_intrinsic int_id)
‘ ‘ :

Description

__nds32__set_int_priority sets the priority of an interrupt specified by “int_id".
__nds32__get_int_priority returns the priority of an interrupt specified by “int_id”.

The updated priority located in INT_PRI and INT_PRI12 will be seen by the code after the

intrinsic function.

The following table lists all programmable interrupts.

Value of “int_id” Interrupt
NDS32_INT_HO HWO
NDS32_INT_H1 HW1
NDS32_INT_H2 HW2
NDS32_INT_H3 HW3
NDS32_INT_H4 HW4
NDS32_INT_H5 HWS
NDS32_INT_H6 HW6
NDS32_INT_H7 HW7
NDS32_INT_H8 HW8
NDS32_INT_H9 HW9
NDS32_ INT_H10 HW10
NDS32_ INT_H11 HW11
NDS32_ INT_H12 HW12

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, Page 207

reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.
Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY
Value of “int_id” Interrupt
NDS32_ INT_H13 HW13
NDS32_ INT_H14 HW14
NDS32 INT _H15 [/ O ﬁ:I I I HW15
NDS32_ INT_H16 HW16
NDS32_ INT_H17 \He | ease |
NDS32_ INT_H18 HW18
NDS32_ INT_H19 HW19
NDS32_ INT_H20 HW20
NDS32_ INT_H21 HW21
NDS32_ INT_H22 HW22
NDS32_ INT_H23 HW23
NDS32_ INT_H24 HW24
NDS32_ INT_H25 HW25
NDS32_ INT_H26 HW26
NDS32_ INT_H27 HW27
NDS32_ INT_H28 HW28
NDS32_ INT_H29 HW29
NDS32_ INT_H30 HW30
NDS32_ INT_H31 HW31

Privilege Level: Superuser and above

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 208
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 émgggf

__nds32_ get _trig_type

Syntax

unsigned int _ nds32_get trig_type(enum nds32_intrinsic int_id)

]

Description
_nds32__get_tri) kype-returns.the trigger type of a HW interrupt specified by “int_id”.
\C 1T AdoC

The updated trigger type located in INT_TRIGGER will be seen by the code after the intrinsic

function.

The following table lists all programmable interrupts.

Value of “int_id” Interrupt
NDS32_INT_HO HWO
NDS32_INT_H1 HW1
NDS32_INT_H2 HW2
NDS32_INT_H3 HW3
NDS32_INT_H4 HW4
NDS32_INT_H5 HWS
NDS32_INT_H6 HW6
NDS32_INT_H7 HW7
NDS32_INT_H8 HW8
NDS32_INT_H9 HW9
NDS32_ INT_H10 HW10
NDS32_ INT_H11 HW11
NDS32_ INT_H12 HW12
NDS32_INT_H13 HW13
NDS32_INT_H14 HW14
NDS32_ INT_H15 HW15
NDS32_ INT_H16 HW16

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 209
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY
Value of “int_id” Interrupt

NDS32_ INT_H17 HW17

NDS32_ INT_H18 HW18

NDS32_ INT_H19 [/ O ﬁ:I I I HW19

NDS32_ INT_H20 HW20

NDS32_INT_H21 \He | ease |

NDS32_ INT_H22 HW22

NDS32_ INT_H23 HW23

NDS32_ INT_H24 HW24

NDS32_ INT_H25 HW25

NDS32_ INT_H26 HW26

NDS32_ INT_H27 HW27

NDS32_ INT_H28 HW28

NDS32_ INT_H29 HW29

NDS32_ INT_H30 HW30

NDS32_ INT_H31 HW31

Privilege Level: Superuser and above

Page 210

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

12.2.11. Intrinsics for COP ISA Extension

COP ISA extension is configurable. Currently, only N10, N13 and D10 can configure with COP
extension. COP intrinsic functions are supported if CPU_VER[3] is set.

I
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Page 211
Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY
Name
_ _nds32__cpel
_ nds32__ cpe2
_ nds32__ cpe3
__Nnds32__cped o~ -~
" 1 -
Syntax D ~

void __nds32__cpgi(CoﬁSt'hns1gned int cpn, const unsigned int cpil9)
void _ nds32_ cpe2(const unsigned int cpn, const unsigned int cpil9)
void _ nds32_ cpe3(const unsigned int cpn, const unsigned int cpil9)
void _ nds32_ cped(const unsigned int cpn, const unsigned int cpil9)

Where:
Parameter “cpn” is the coprocessor number. cpn = {0,1,2,3}

Parameter “cpi19” is the 19-bit immediate that carries an encoded coprocessor command.

Description
These instructions send “cpil9” encoded CPE1~CPE4 coprocessor commands to the coprocessor
“n” for execution.

Return Value
None

Privilege Level: ALL

Example

#include <nds32_intrinsic.h>
void func_cpex (void)

{
//Send CPE 2 command Ox7bcde to coprocessor 1
_ _nds32_ _cpe2(1l, Ox7bcde);
//Send CPE 3 command Ox7bcde to coprocessor 1
__nds32___cpe3(1l, Ox7bcde);

by

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 212
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY
Name
__nds32__cpld

__nds32__ _cpld_bi

Syntax T

void _ nds32__gpld(cohst Jnsigned int cpn, const unsigned int cprn, unsigned long

long *base, sigan intwreffset, const unsigned int sv)

void _ nds32___cpld_bi(const unsigned int cpn, const unsigned int cprn, unsigned
long long *base, signed int roffset, const unsigned Int sv)

Where:

Parameter “cpn” is the coprocessor number. (cpn = {0,1,2,3})

Parameter “cprn” is the ID number of one of the 32 coprocessor registers that receives
64-bit loaded data from the memory. (O <= cprn <= 31).

Parameter “base” is the GPR number that contains the base address of this instruction.

Parameter “roffset” is the GPR number that contains the signed offset address of this
instruction.
Parameter “sv” is the left shift amount for offset addressing. (sv = {0,1,2,3})

Description
__nds32__cpld uses the calculated address of “R[base]+(R[roffset] << sv)” to load a 64-bit
datum into the coprocessor register “cprn”.

__nds32__cpld_bi uses the address of R[base] to load a 64-bit datum into the coprocessor
register “cprn”, and then updates R[base] with the calculated value of “R[base]+(R[roffset] <<

sv)”.

Return Value

None

Privilege Level: ALL

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 213
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3

ANDES

TECHNOLOGY
Example

#include <nds32_intrinsic.h>

void func_cpld (void)
{

, roffset, 2);

//Load 64-bit data from address “base” into coprocessor 1 register 3
// Update “base” register with “base+(roffset<<2)”
__ nds32__cpld_bi(1, 3, base, roffset, 2);

I
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,

reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.
Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 214

Andes Programming Guide for ISA V3 éﬂggﬁ,

Name
__nds32__cpldi
__nds32__ _cpldi_bi

Syntax -

void__nds32__cpldi(constLnsigned int cpn, const unsigned int cprn, unsigned long
long *base, cons} signed-inat~1nml2)

void _ nds32__ cpldi_bi(const unsigned int cpn, const unsigned int cprn, unsigned
long long *base, const signed Int imml2)

Where:

Parameter “cpn” is the coprocessor number. (cpn = {0,1,2,3})

Parameter “cprn” is the ID number of one of the 32 coprocessor registers that receives
64-bit loaded data from the memory. (O <= cprn <= 31).

Parameter “base” is the GPR number that contains the base address of this instruction.

Parameter “imm12” is the 12-bit immediate signed offset address of this instruction.

Description
__nds32___cpldi uses the calculated address of “R[base]+SignExtend(imm12)” to load a 64-bit
datum into the coprocessor register “cprn”.

__nds32__cpldi_bi uses the address of R[base] to load a 64-bit datum into the coprocessor
register “cprn”, and then updates R[base] with the calculated value of
“R[base]+SignExtend(imm12)”.

Return Value

None

Privilege Level: ALL

Example

#include <nds32_intrinsic.h>
void func_cpldi (void)

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 215
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3

ANDES

TECHMNOLOGY

unsigned long long *base;

//Load 64-bit data from address ‘“base+SignExtend(0x450)” into
// coprocessor register 3

se, 0x450);

r with “base+(0x450)”
base, 0x450);

I
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed

reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation
Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 216

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY
Name
__ nds32__cplw

_ nds32__cplw_bi

Syntax -

void _ nds32__¢plw(const Jnsigned int cpn, const unsigned Int cprn, unsigned int
*base, signed inF roffset,~coenst unsigned int sv)

void _ nds32___cplw_bi(const unsigned int cpn, const unsigned int cprn, unsigned
int *base, signed int roffset, const unsigned iInt sv)

Where:

Parameter “cpn” is the coprocessor number. (cpn = {0,1,2,3})

Parameter “cprn” is the ID number of one of the 32 coprocessor registers that receive 32-bit
loaded data from the memory. (0O <= cprn <= 31.)

Parameter “base” is the GPR number that contains the base address of this instruction.

Parameter “roffset” is the GPR number that contains the signed offset address of this
instruction.

Parameter “sv” s the left shift amount for offset addressing. (sv ={0,1,2,3})

Description
__nds32___cplw uses the calculated address of “R[base]+(R[roffset] << sv)” to load a 32-bit

datum into the coprocessor register “cprn”.

__nds32__cplw_bi uses the address of R[base] to load a 32-bit datum into the coprocessor
register “cprn”, and then updates R[base] with the calculated value of “R[base]+(R[roffset] <<

sv)”.

Return Value

None

Privilege Level: ALL

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 217
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3

ANDES

TECHNOLOGY
Example

#include <nds32_intrinsic.h>
void func_cplw (void)

{

, roffset, 2);

//Load 32-bit data from address “base” into coprocessor 1 register 3
// Update “base” register with “base+(roffset<<2)”
_ nds32__cplw_bi(1, 3, base, roffset, 2);

I
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,

reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.
Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 218

Andes Programming Guide for ISA V3 éﬂggﬁ,

Name
_ _nds32__cplwi
_ nds32__cplwi_bi

Syntax T

void___nds32__cplwi(const‘unsigned int cpn, const unsigned int cprn, unsigned int
*base, const sigped‘int nml2)

void _ nds32__ cplwi_bi(const unsigned int cpn, const unsigned int cprn, unsigned
int *base, const signed int 1mml2)

Where:

Parameter “cpn” is the coprocessor number. (cpn = {0,1,2,3})

Parameter “cprn” is the ID number of one of the 32 coprocessor registers that receives 32-bit
loaded data from the memory. (0 <= cprn <= 31)

Parameter “base” is the GPR number that contains the base address of this instruction.

Parameter “imm12 is the 12-bit immediate signed offset address of this instruction.

Description
__nds32___cplwi uses the calculated address of “R[base]+SignExtend(imm12)” to load a 32-bit
datum into the coprocessor register “cprn”.

__nds32__cplwi_bi uses the address of R[base] to load a 32-bit datum into the coprocessor
register “cprn”, and then updates R[base] with the calculated value of
“R[base]+SignExtend(imm12)”.

Return Value

None
Privilege Level: ALL

Example

#include <nds32_intrinsic.h>
void Ffunc_cplwi (void)

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 219
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3

ANDES

TECHMNOLOGY

unsigned int *base;

//Load 32-bit data from address ‘“base+SignExtend(0x450)” into
// coprocessor 1 register 3

_ nds32

ase, 0x450);

// Upds tRéei%ar r with “base+(0x450)”

base, 0x450);

I
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed

reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation
Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 220

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY
Name
__nds32___cpsd

__nds32__ _cpsd_bi

Syntax T

‘nsigned int cpn, const unsigned int cprn, unsigned long

long *base, sign‘ed intwreffset, const unsigned int sv)

void _ nds32__ gpsd{cohst-u

void _ nds32__cpsd_bi(const unsigned int cpn, const unsigned int cprn, unsigned
long long *base, signed int roffset, const unsigned Int sv)

Where:

Parameter “cpn” is the coprocessor number. (cpn = {0,1,2,3})

Parameter “cprn” is the ID number of one of the 32 coprocessor registers that provides
64-bit stored data to the memory. (O <= cprn <= 31)

Parameter “base” is the GPR number that contains the base address of this instruction.

Parameter “roffset” is the GPR number that contains the signed offset address of this
instruction.

Parameter “sv” is the left shift amount for offset addressing. (sv ={0,1,2,3})

Description
__nds32__ cpsd uses the calculated address of “R[base]+(R[roffset] << sv)” to store a 64-bit

datum from the coprocessor register “cprn” into the memory.

__nds32___cpsd_bi uses the address of R[base] to store a 64-bit datum from the coprocessor
register “cprn” into the memory, and then updates R[base] with the calculated value of
“R[base]+(R[roffset] << sv)”.

Return Value

None

Privilege Level: ALL

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 221
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

A g N
Andes Programming Guide for ISA V3 NDES

TECHNOLOGY
Example

#include <nds32_intrinsic.h>

void func_cpsd (void)
{

//Load 64-bit data to address “base” from coprocessor 1 register 3
// Update “base” register with “base+(roffset<<2)”
__ nds32__cpsd_bi(1, 3, base, roffset, 2);

I
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,

reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.
Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 222

Andes Programming Guide for ISA V3 éﬂggﬁ,

Name
__nds32___cpsdi
__nds32__ cpsdi_bi

Syntax -

void__nds32__cpsdi(constLnsigned int cpn, const unsigned int cprn, unsigned long
long *base, cons} signed-inat~1nml2)

void _ nds32__ cpsdi_bi(const unsigned int cpn, const unsigned int cprn, unsigned
long long *base, const signed Int imml2)

Where:

Parameter “cpn” is the coprocessor number. (cpn = {0,1,2,3})

Parameter “cprn” is the ID number of one of the 32 coprocessor registers that provides
64-bit stored data to the memory. (O <=cprn <=31).

Parameter “base” is the GPR number that contains the base address of this instruction.

Parameter “imm12” is the 12-bit immediate signed offset address of this instruction.

Description
__nds32__cpsdi uses the calculated address of “R[base]+SignExtend(imm12)” to store a 64-bit

datum from the coprocessor register “cprn” into the memory.

__nds32__cpsdi_bi uses the address of R[base] to store a 64-bit datum from the coprocessor
register “cprn” into the memory, and then updates R[base] with the calculated value of
“R[base]+SignExtend(imm12)”.

Return Value

None
Privilege Level: ALL

Example

#include <nds32_intrinsic.h>
void func_cpsdi (void)

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 223
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3

ANDES

TECHMNOLOGY

unsigned long long *base;

//Store 64-bit data to address “base+SignExtend(0x450)” from
// coprocessor 1 register 3

ase, 0x450);
//Storé 64-bit géta to address “base” from coprocessor 1 register 3.
r with “base+(0x450)”

base, 0x450);

I
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,

reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.
Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 224

Andes Programming Guide for ISA V3 éﬂggﬁ,

Name
__nds32___cpsw
__nds32__ _cpsw_bi

Syntax -

void _ nds32__ ¢psw(cohst Jnsigned int cpn, const unsigned Int cprn, unsigned int
*base, signed inF roffset,~coenst unsigned int sv)

void _ nds32___cpsw_bi(const unsigned int cpn, const unsigned int cprn, unsigned
int *base, signed int roffset, const unsigned iInt sv)

Where:

Parameter “cpn” is the coprocessor number. (cpn = {0,1,2,3})

Parameter “cprn” is the ID number of one of the 32 coprocessor registers that provides
32-bit stored data to the memory. (O <= cprn <= 31)

Parameter “base” is the GPR number that contains the base address of this instruction.

Parameter “roffset” is the GPR number that contains the signed offset address of this
instruction.

Parameter “sv” s the left shift amount for offset addressing. (sv ={0,1,2,3})

Description
__nds32__cpsw uses the calculated address of “R[base]+(R[roffset] << sv)” to store a 32-bit

datum from the coprocessor register “cprn” into the memory.

__nds32__ cpsw_bi uses the address of R[base] to store a 32-bit datum from the coprocessor
register “cprn” into the memory, and then updates R[base] with the calculated value of
“R[base]+(R[roffset] << sv)”.

Return Value

None

Privilege Level: ALL

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 225
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

A g N
Andes Programming Guide for ISA V3 NDES

TECHMNOLOGY

Example

#include <nds32_intrinsic.h>
void func_cpsw (void)

{
unsign
unsianb G Forser
//Storé 32-bit data to address “base+(roffset<<2)” from
// copro QQJ r 3
nds32 W , roffset, 2);
//Load 32-bit data to address “base” from coprocessor 1 register 3
// Update “base” register with “base+(roffset<<2)”
_ nds32__cpsw_bi(1, 3, base, roffset, 2);
b

-
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 226
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggﬁ,

Name
__nds32___cpswi
__nds32__ _cpswi_bi

Syntax T

void___nds32__cpswi(const‘unsigned int cpn, const unsigned int cprn, unsigned int
*base, const sigped‘int nml2)

void _ nds32__ cpswi_bi(const unsigned int cpn, const unsigned int cprn, unsigned
int *base, const signed int 1mml2)

Where:

Parameter “cpn” is the coprocessor number. (cpn = {0,1,2,3})

Parameter “cprn” is the ID number of one of the 32 coprocessor registers that provides
32-bit stored data to the memory. (O <= cprn <= 31)

Parameter “base” is the GPR number that contains the base address of this instruction.

Parameter “imm12” is the 12-bit immediate signed offset address of this instruction.

Description
__nds32___cpswi uses the calculated address of “R[base]+SignExtend(imm12)” to store a 32-bit

datum from the coprocessor register “cprn” into the memory.

__nds32___cpswi_bi uses the address of R[base] to store a 32-bit datum from the coprocessor
register “cprn” into the memory, and then updates R[base] with the calculated value of
“R[base]+SignExtend(imm12)”.

Return Value

None
Privilege Level: ALL

Example

#include <nds32_intrinsic.h>
void func_cpswi (void)

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 227
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3

ANDES

TECHMNOLOGY

unsigned int *base;

//Store 32-bit data to address “base+SignExtend(0x450)” from
// coprocessor 1 register 3

ase, 0x450);

//Stor ddress “base” from coprocessor 1 register 3.
// Upds tRéei%ar r with “base+(0x450)”
__nds3 i_bi

base, 0x450);

I
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed

reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation
Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 228

- -
Andes Programming Guide for ISA V3 émgggf

Name
__nds32__mfcpd

Syntax

unsignedlongloﬁg;_ndSSZJ mfcﬁd(constunsignedintcpn,constunsignedintimle)

Where: Release

Parameter “cpn” | Is the coprocessor'/number. (cpn={0,1,2,3})

Parameter “imm12” is the 12-bit immediate value that encodes the 64-bit coprocessor state space.

Description

__nds32__mfcpd moves a 64-bit datum from the 64-bit coprocessor state space “imm12” into an
even/odd pair of two 32-bit GPRs.

Return Value

None
Privilege Level: ALL

Example

#include <nds32_intrinsic.h>
void func_mfcpd (void)

{
unsigned long long data64;
//Move 64-bit data from coprocessor 1 64-bit state space 10 into two GPRs
data64 = nds32_ mfcpd(l, 10);

+

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 229
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 émgggf

Name
__nds32__mfcpw

Syntax

unsigned int _;ﬁds32;;mchw(cdhst unsigned Int cpn, const unsigned Int Imml2)

Where: Release

Parameter “cpn” Isthe coprocessor'/number. (cpn={0,1,2,3})
Parameter “imm12” is the 12-bit immediate value that encodes the 32-bit coprocessor state space.

Description

__nds32__mfcpw moves a 32-bit datum from the 32-bit coprocessor state space “imm12” into a
32-bit GPR.

Return Value

None
Privilege Level: ALL

Example

#include <nds32_intrinsic.h>
void Ffunc_mfcpw (void)

{
unsigned int data32;
//Move 32-bit data from coprocessor 1 32-bit state space 10 into a GPR
data32 = nds32_ mfcpw(l, 10);

}

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 230
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 émgggf

Name
__nds32___mfcppw

Syntax

unsigned int __ﬁds32;;mfc?pw(¢6nst unsigned int cpn, const unsigned int imml2)

Where: Release

Parameter “cpn” is the coprocessor AUMber. (cpn={0,1,2,3})

Parameter “imm12” is the 12-bit immediate value that encodes the 32-bit coprocessor state space.

Description

__nds32__mfcppw moves a 32-bit datum from the 32-bit coprocessor privileged state space
“imm12” into a 32-bit GPR.

Return Value

None
Privilege Level: Superuser and above

Example

#include <nds32_intrinsic.h>
void func_mfcppw (void)

{
unsigned int data32;
//Move 32-bit data from coprocessor 1 32-bit privileged state space 10
// into a GPR
data32 = _ nds32_ mfcppw(l, 10);
}

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 231
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 émgggf

Name
__nds32__mtcpd

Syntax

void __ndsBZ__mtcpd(constJunsfgned int cpn, unsigned long long source, const
unsigned int imm12) /

‘\

Where:

Parameter “cpn” is the coprocessor number. cpn = {0,1,2,3}

Parameter “source” a 64-bit datum stored in an even/odd pair of two 32-bit GPRs.

Parameter “imm12” is the 12-bit immediate value that encodes the 64-bit coprocessor state
space.

Description

__nds32__mtcpd moves a 64-bit datum to the 64-bit coprocessor state space “imm12” from an
even/odd pair of two 32-bit GPRs.

Return Value

None
Privilege Level: ALL

Example

#include <nds32_intrinsic.h>
void func_mtcpd (void)

{
unsigned long long data64;
//Move 64-bit data to coprocessor 1 64-bit state space 10 from two GPRs
_ nds32__ _mtcpd(1l, data64, 10);

+

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 232
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 émgggf

Name
__nds32__mtcpw

Syntax

void __nds32__mf¢pw(eonstJunsiéned int cpn, unsigned int source, const unsigned
int imml2) ’

Where:

Parameter “cpn” is the coprocessor number. (cpn ={0,1,2,3})

Parameter “source” is a 32-bit datum stored in a 32-bit GPR.

Parameter “imm12” is the 12-bit immediate value that encodes the 32-bit coprocessor state
space.

Description

__nds32__mtcpw moves a 32-bit datum to the 32-bit coprocessor state space “imm12” from a
32-bit GPR.

Return Value

None
Privilege Level: ALL

Example

#include <nds32_intrinsic.h>
void func_mtcpw (void)

{
unsigned int data32;
//Move 32-bit data to coprocessor 1 32-bit state space 10 from a GPR
_ nds32__mtcpw(l, data32, 10);

by

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 233
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 émgggf

Name
__nds32___mtcppw

Syntax

void __nds32__mtcppw(consf unsigned int cpn, unsigned int source, const unsigned
int imml12) /

Where:

Parameter “cpn” is the coprocessor number. (cpn ={0,1,2,3})

Parameter “source” is a 32-bit datum stored in a 32-bit GPR.

Parameter “imm12” is the 12-bit immediate value that encodes the 32-bit coprocessor
privileged state space.

Description

__nds32__mtcpw moves a 32-bit datum to the 32-bit coprocessor privileged state space “imm12”
from a 32-bit GPR.

Return Value

None
Privilege Level: Superuser and above

Example

#include <nds32_intrinsic.h>
void func_mtcppw (void)

{
unsigned int data32;
//Move 32-bit data to coprocessor 1 32-bit privileged state space 10
// from a GPR
__nds32__ _mtcppw(l, data32, 10);
}

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 234
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggé

13. User/Kernel Space

In general, programs-carbewrittenfor user-space or kernel-space applications. Any instruction
available to user-space/programsiisialways available to kernel-space programs. On the other

hand, however, instroctions-available to kernel-space programs are only available to user-space
in a restricted wayand-instructions.désigned to allow user-space programs accessing resources

are only visible to kernel-space programs.

13.1. Privilege Resources

In general, privilege resources refer to the system registers which can only be visible to
kernel-space programs. Please refer to AndeStar System Privilege Architecture Manual in the

package for detailed information.

13.1.1. Configuration System Registers
These system registers are hardwired when hardware configurations are determined before the

hardware is manufactured. Thus, they are read-only registers.

13.1.2. Interruption System Registers

These system registers are properly set when an interruption occurs. Thus, they should be

read-only registers and the updates on these registers must be performed carefully.

13.1.3. MMU System Registers

These system registers are all related to MMU and paging functions. Thus, they should be only
used when MMU is hardware configured and under a full-blown operating system such as Linux.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 235
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 é,ﬂgisv

13.1.4. ICE System Registers

These system registers are all related to debugging, especially when using ICE.

13.1.5. Performance Monitoring Registers

These system registerstare atl qelated to performance monitoring capability of Andes
Architecture. Normally, they are accessed by the service routines of the underlying operating
system.

13.1.6. Local Memory DMA Registers

These system registers are all related to instruction and data local memory of Andes Architecture
when hardware is configured. Normally, they are accessed by the service routines of the

underlying operating system.

13.1.7. Implementation-Dependent Registers

These system registers are reserved for use by an implementation. Their uses change from an
implementation generation to the next implementation generation. Some implementations may
not use all of them. Please refer to AndeStar System Privilege Architecture Manual in the
package for details.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 236
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggﬁ,

13.2. Privilege Resource Access Instructions

Please refer to AndeStar System Privilege Architecture Manual for the detailed information.

13.2.1. Read fram/Write fo ﬁyﬁtem Registers

} = | (= ~Table'21. Accessing System Registers

Mnemonic Instruction Operation
MFSR rt5, SRIDX Move from System Register rt5 = SR[SRIDX]
MTSR rt5, SRIDX Move to System Register SR[SRIDX] = rt5

13.2.2. Jump Register with System Register Update

Table 22. Instruction Translation On/Off

Mnemonic Instruction Operation
Jump Register and Instruction Translation PC = rb5;
JR.ITOFF rb5
OFF PSW_.IT = O;
PC = rb5;
JR.TOFF rb5 Jump Register and Translation OFF PSW_IT = 0, PSW.DT =
0;
jJaddr = rb5;
LP = PC+4 or rt5 =
JRAL.ITON rb5 Jump Register and Link and Instruction
PC+4;
JRAL.ITON rt5, rb5 | Translation ON
PC = jaddr;
PSW_IT = 1;
jJaddr = rb5;

LP = PC+4 or rt5 =

JRAL.TON rb5 PC+4;

Jump Register and Link and Translation ON i
JRAL.TON rt5, rb5 PC = jaddr;

PSW_IT = 1, PSW.DT =

1;

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 237
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggﬁ,

13.2.3. MMU Instructions

Table 23. TLBOP Subtypes

Mnemopie Instruction Operation
‘ Read a specified entry in the
TLBOP Ra,
\ Readitargeted TLB entry software-visible portion of the
TargetRead “CIRD)
TLB structure.
Write a specified entry in the
TLBOP Ra,
Write targeted TLB entry software-visible portion of the
TargetWrite (TWR)
TLB structure.

Write a hardware-determined
random TLB way in a set
determined by the VA (in

TLBOP Ra,
Write PTE into a TLB entry TLB_VPN) and page size (in

Rwrite (RWR)
TLB_MISC) in the
software-visible portion of the

TLB structure.

Write a hardware-determined
random TLB way in a set
determined by the VA (in
TLBOP Ra, TLB_VPN) and page size (in
Write PTE into a TLB entry and lock
RWriteLock (RWLK) TLB_MISC) in the
software-visible portion of the

TLB structure. Besides, it also

locks the TLB entry.

Unlock a TLB entry if the VA in

the general register Ra
TLBOP Ra,

Unlock a TLB entry matches the VPN of a set
Unlock (UNLK)))
determined by the VA (in Ra)

and page size (in TLB_MISC).

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 238
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂgisv

Mnemonic Instruction Operation

Search all TLB structures

(software-visible and

TLBOP Rt, Ra, software-invisible) for a
Rrolle TLB entry
Probe (PB) specified VA and generate an
entry number where the VA

matches the VPN in that entry.

TLBOP Ra, Invalidate the TLB entry
Invalidate TLB entries
Invalidate (INV) containing VA stored in Rx.

Flush all TLB entries except locked
TLBOP FlushAll (FLUA)

entries

Load VLPT page table which

always goes through data TLB
Load VLPT page table
LD_VLPT translation. On TLB miss,

(optional instruction)
generate Double TLB miss

exception.

13.3. Privileged Instructions

In general, privileged instructions refer to the instructions that can only be used by kernel-space
programs. Accordingly, those listed in section 13.2 are all privileged instructions. Please refer to
AndeStar System Privilege Architecture Manual for more information about privileged

instructions.

13.3.1. IRET: Interruption Return

This instruction is used to return from interruption to the instruction and a state when the

processor is being interrupted.

13.3.2. SETGIE.E/SETGIU.D: Set Global Interruption Enable

This instruction is used to control the global interrupt enable bit in the PSW register.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 239
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3

13.3.3. CCTL: Cache Control

This instruction is used to perform various operations on processor caches. Not all of them are

available to user-space programs. Please refer to section 13.4 below for corresponding
restrictions.

M|
13.3.4. STANDBY: Wait forBxtethal Event

This instruction is used for a core to enter a standby state while waiting for the occurrence of

external events. Users have to specify the SubType (wake_grant/no_wake grant/wait_done)
based on their needs.

-
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,

reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.
Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 240

ANDES

TECHMNOLOGY

Andes Programming Guide for ISA V3 éﬂgisv

13.4. Instructions for User-space Program to Access System Resources

In general, instructions for user-space program to access system resources refer to the
instructions that can.be.used.by.user-space programs to perform tasks normally required kernel

privilege. Please refer to AndeStar, System Privilege Architecture Manual for more information.

13.4.1. DPREF/DPREFI: Data Prefetch

These instructions are used as hints to move data from memory to data cache in advance before

the actual load or store operations reduce memory access latency.

13.4.2. SETEND.B/SETEND.L: Set Data Endian

These instructions are used to control the data endian mode in the PSW register.

13.4.3. CCTL: Cache Control
This instruction is used to perform various operations on processor caches. Only the following

sub-types are available for user-space programs:

Table 24. CCTL Subtypes

Mnemonic Instruction
L1D VA INVAL Invalidate L1D cache through VA
L1D VA WB Write-back L1D cache through VA

Write-back & invalidate L1D cache
L1D_ VA WBINVAL
through VA

L11 VA INVAL Invalidate L1I cache through VA

——
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 241
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂgisv

13.4.4. ISB/DSB: Data/Instruction Serialization Barrier

ISB/DSB are used to serialize pipeline hazards for certain hardware state updates affecting

instruction execution. Section 13.5 discusses serializations related to CPU Control Register

Accesses. There is also'sérialization|related to Cache Control instructions (CCTL). For example,
there is a hazard from CCTL Instruction Cache Invalidate to the subsequent instruction
fetch. Similarly, there\is-a'hazardfrom/CCTL Data Cache Invalidate to the subsequent
load/store instructions. Please consult AndeStar Instruction Set Architecture Manual for

serialization behavior in the sections for the related instructions.

13.4.5. STANDBY: Wait for External Event

This instruction is used for a core to enter a standby state while waiting for the occurrence of
external events. Then encoded wake grant operand shall be ignored as if no_wake grant is

specified.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 242
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggé

13.5. Serializations Related to CPU Control Register Accesses

CPU Control Registers (CCRs) include System Registers, User-Special Registers, and

Coprocessor Control.Registers..Certain CCRs have special control bits, which interact with some

instructions. Those are/calléd CCR-related pipeline hazards. In such cases, 1SB or DSB may

be needed to ensure.that the program results are committed according to the sequential order.

Here are the general occasionsto'useserialization instructions when accessing CCRs:

B After the instruction writing a CCR (such as MTSR), 1SB must be inserted if the CCR is a
register with side-effect to the following instructions.

B Before the instruction reading a CCR (such as MFSR), DSB must be inserted if the CCR

contains the state as a result of executing the preceding instructions.

CCRs are not accessed frequently, but they need to be accessed to achieve some special control
purposes in either user code or kernel code. Please consult AndeStar System Privilege
Architecture Manual for the CCRs of interest and their related pipeline hazards. Here are some
examples:
B Changing the data endian in Program Status Word register $PSW, followed by load/store
instructions.
Changing Interruption Vector Base in $1VB, followed by instructions generating exceptions.
B Changing Instruction Local Memory (ILM) Base Address in $1LMB, followed by an
instruction jumping to ILM.
B Changing Data Local Memory (DLM) Base Address in $DLMB, followed by load/store
instructions targeting DLM.
Saturation instructions generating overflow followed by reading of $PSW.
B Changing Instruction Table Base $1TB, followed by ex9. it instructions.

Here are general notes for code snippet involving accesses to CCRs:

B Ifitisinassembly code, determine if the instructions used have any pipeline hazard
related to the CCRs in question and insert 1SB/DSB as appropriate.

B Ifitisin C code, determine if C operations have any pipeline hazard related to the CCRs

in question and insert 1SB/DSB as appropriate.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 243
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂgisv

A special note for C code, -Os and some older V3 CPUs (including N968A with
CPU Version<=9, N1068A with CPU Version<=8, and N1337 with CPU
Version<=8):

When a C file is compiHed-with-size-eptimization (i.e. -0s) using a toolchain for the above V3
family CPUs and $PSW is ac¢essed through inline assembly or intrinsic functions, 1SB/DSB
must be inserted as-appropriate. Thisjis because some special instructions generated by —Os
optimization may.cause $PSW-related pipeline hazard for these CPUEs.

Newer V3 CPUs take care of pipeline hazard directly in hardware. So, software programmers

can expect sequential program behavior without using 1SB/DSB even when accessing $PSW.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 244
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggé

14. Linking/Loading

This chapter introducestwo supported linking forms: static linking and dynamic linking.

14.1. Static Linking

The —static option will force the link editor to link against static version of C runtime libraries
such as libc.aand libm.a. By default, the link editor will use shared version of C runtime

libraries, such as Libc.so and Libm.so, unless —static option is used.

14.2. Dynamic Linking

This is the default linking mode performed by link editor. Dynamic linking has many advantages
over static linking, such as

1. It produces smaller executables, which consume less storage and memory spaces.

2. Shared Libraries used by executables are upgradable at later time without relinking.

3. Loading and unloading shared libraries are possible at runtime.

However, it also has disadvantages over static linking, such as
1. It starts and runs slower.

2. Shared version of library is bigger than its static counterpart.

14.3. Guidelines to Decide Linking Mode

For systems without Linux/shared Libraries, use static linking only.

2. For complicated systems that have many executables, use dynamic linking to save
storage and memory spaces.

3. To make your system upgradable after release, use dynamic linking.

4. To maximize performance or profiling, use static linking.
For simple systems with little executables, use static linking to save storage and memory

spaces.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 245
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggé

15. Linker Script Generation

While GNU linker has a complicated language to specify the image format, Andes offers a rather
simple mechanism foryou-tospecifythe memory map and generate the linker script. By
following Andes-defined SaG.(Scattering-and-Gathering) format, you can easily create a
description file aboubiprage-compaonent arrangement required to generate a linker script using
the command option-nds—ldsag.-The/following sections give detailed introduction to SaG script
format and Andes linker script generator LdSaG (nds_ Idsag).

15.1. Script Format SaG and Its Syntax

SaG (Scattering-and-Gathering) is an Andes-defined script format for describing the memory
map of an application to the linker. With the file extension .sag, a SaG-formatted description file
can specify:

B the load memory address (LMA).

the attributes and maximum size of each load region.

the virtual memory address (VMA), which is also the execution address.

the attributes and maximum size of each execution region.

the input sections for each execution region.

15.1.1. BNF Notation for SaG Syntax

The table below summarizes the BNF symbols that are used to describe the SaG syntax.

Symbol Description

It is used to indicate a character is used as its literal character. For example, the
definition A“+”B can only be replaced by the pattern A+B while the definition
A+B can be replaced by patterns AB, AAB, or AAAB.

Defines A as B. The ::= notation means “is defined as”. Thus, A::= B"+", for
example, means that A is equivalent to B+.

[A] Optional element A. For example, [A] can be A or “NULL”.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 246
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggﬁ,

Symbol Description

At Element A can have one or more occurrences. Thus, A+ can be A, AA, or AAA....

A Element A can have zero or more occurrences. Thus, A* can be “NULL", A, AA,
or AAAL.. |

A|B Eiﬂher elementA ©r B can occur, but not both. The | notation means “or”.
The () notation stands for “grouping”. Therefore, (AB) means element A and B

(AB) are grouped together. That is, both A and B have to occur and can be regarded
as one unit.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 247
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3

ANDES

TECHMNOLOGY

15.1.2. Formal Syntax of SaG Format

15.1.2.1 Overview

The SaG-formatted.script.s.constructed by the hierarchy of load regions, execution regions
and input sections:. Ta staft with, define a script as one or more

Ioad_region+descriptionpaﬂern&
| ‘

Id_script ::=
[header] load region_description+

header ::=

((““USER_SECTIONS” section_name+)*

| (“DEFINE” variable_name expression)*)
| (““INCLUDE” ““File_name”)*)

Note that if there is any user-defined section used in your source files and the section is not
defined in generic linker script, you have to declare it in header. Otherwise, LdSaG

(nds_ Idsag) will show a warning message after compiling. In header syntax,
USER_SECTIONS is a keyword and must be upper-cased. The following gives an example:

If you define a section .my_section in the assembly file —

.section .my section, "ax"
you have to declare the section in the SaG-formatted script like below:

USER_SECTIONS .my_section
LOAD 0x00100000

{
EXEC +0x00000000
{
* (+RO, .my_section)
* (+RW,+ZI1)
STACK = 0x00700000
}
}

DEFINE is another form of header syntax. It is also a key word and must be upper-cased.
You can use it to define a local variable and its value. As for expression, itis like ¢

language expression, such as:
A+ B

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 248

- -
Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

A + 10
10 +10

INCLUDE, the last form of header syntax, is a key word too and must be upper-cased.

You can use jtto-includeothertinker script in the generated script. Note that file_name

]

must be doublé-quoted.as follows:
INCLUDE “secend . 1d™ _

‘\

Next, define a Ioad_region_deScription as a load region name, optionally followed by
attributes or size specifiers, and one or more execution region descriptions:

load_region_description ::=
load _region_name (address|(“+”offset)) [load_attr][max_size]
“{“

exe_region_description+

cyr

An exe_region_description, in turn, is defined as an execution region name, a base

address specification, optionally followed by attributes or size specifiers, and one or more
input section descriptions:

exe_region_description ::=
exe_region_name (address| (“+” offset)) [exe_attr][max_size]
l‘{l‘

(input_section_description)+

3

Last, define an input_section_description as a source module selector pattern

optionally followed by input attributes, an address variable, a load address variable, a stack,
or a VAR variable.

input_section_description ::=

(module_select_pattern [input_attr] “(’ input_section_selector (“,”
input_section_selector)*)~

| ADDR variable

| LOADADDR variable

| STACK “=" num

| VAR variable “=" num

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 249
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

N
Andes Programming Guide for ISA V3 éﬂgggf

15.1.2.2 Load Region Description
Syntax
load_region_description ::=
load_region_name (address|(’+”offset)) [load_attr][max_size]

¢ (exe_region_degéription | exe_overlay_region_description)+

where

load_region_name consists of letters, underscore and numbers. Note that the
first character must not be a number.

address can be a decimal or hexadecimal number.

offset can be a decimal or hexadecimal number. If it is used in the
first load region, then +offset means that the base address
begins offset bytes after zero. Otherwise, it means offset
bytes beyond the end of the preceding load region.

load_attr is defined as “ALIGN alignment” where
W ALIGN is a keyword and must be upper-cased.
B alignment can be a two-to-the-power decimal or

hexadecimal number.

max_size specifies the maximum size of the load region. Its value can
be a decimal or hexadecimal number. If the target object
size is bigger than the value, it will report error in linking
time.

exe_region_description Please refer to Section 15.1.2.3.

exe_overlay_region_description Please refer to Section 15.1.2.5.

Example

LOAD_ROM_1 Ox0000 ALIGN Ox4 0x10000 ; the LOAD ROM_1 will be aligned to

; 4-byte aligned address and the max size is 64k

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 250
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggﬁ,

15.1.2.3 Execution Region Description
Syntax
exe_region_description ::=
exe_region_name (address| (“+” offset)) [exe_attr][max_size]

¢ (input_sectionldescription)+
> }

where

exe_region_name consists of letters, underscore and numbers. Note that the
first character must not be a number.

address can be a decimal or hexadecimal number.

offset can be a decimal or hexadecimal number. If it is used in the
first execution region in the load region, then +offset means
that the base address begins offset bytes after the base of
the containing load region. Otherwise, it means offset bytes
beyond the end of the preceding execution region.

exe_attr is defined as “ALIGN alignment” where
B ALIGN is a keyword and must be upper-cased.
B alignment can be a two-to-the-power decimal or

hexadecimal number.

max_size specifies the maximum size of the load region. Its value can
be a decimal or hexadecimal number. If the target object size
is bigger than the value, it will report error in linking time.

Input_section_description Please refer to Section 15.1.2.4.

Example

EXEC_ROM_1 0x0000 ALIGN 0Ox4 0x8000 ; the EXEC ROM 1 will be aligned to
; 4-byte aligned address and the max size is 32k

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 251
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3

ANDES

TECHMNOLOGY

15.1.2.4 Input Section Description

Syntax
input_section_description ::=

(module_select_pattern exclude_description [input_attr] “(”

input(section selecton (“,” input_section_selector)* *)”

| ADDR [NEXT] Variable
| LOADAPDEM[NEXT]~VQriabIe
| STAGK “=" num_ /
| VAR variable “=" expression
| variable “=” ALIGN “(“num”)”
)
where

module_select pattern

is defined as “(Ffilename)+" where

B filename can be any object file name or path of the
object file. The wildcard character *
matches zero or more characters while ?

matches any single character.

exclude_description

is defined as EXCLUDE_FILE “(* (Filename)+)" where
B EXCLUDE_FILE isakeyword and must be upper-cased.
For example, * EXCLUDE_FILE(hello.o) (+RO, +RW, +ZI)

is to put all objects except for hello.o into this region.

input_attr

is defined as at lease one of the following:

B KEEP is a keyword and must be upper-cased.
It marks the sections that should not be
eliminated when link-time garbage
collection is in use.
B SORT is a keyword and must be upper-cased.
It sorts the module file by name.
input_section_selector isdefined as

“+” pnput_section_attr

[NOLOAD] [LMA_FORCE_ALIGN]

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 252

Andes Programming Guide for ISA V3 éﬂggﬁ,

| input_section_pattern
[NOLOAD][input_section_setting]

[input_section_Ima_setting]

\group_input_section_pattern)
_ Where:
\ ‘ : B input_section_attr isan attribute selector matched
against the input section attributes. Recognized
selectors include —
* RO: Select both read-only code and read-only data.
* RW: Select both read-write code and read-write data.
* ZI: Select zero initialized data.
* RO-CODE: Select read-only code.
* RO-DATA: Select read-only data.
* RW-CODE: Select read-write code.
* RW-DATA: Select read-write data.

* ISR: Select interrupt service routine.

B NOLOAD marks a section not to be loaded at runtime,
used as the NOLOAD directive in the GNU linker script.

B | MA FORCE_ALIGN forces the LMA alignment of
sections to be same as the VMA alignment.

B input_section_pattern ::=(.text | .datal.)

where

» _text refers to the following set —
(-text .stub .text.* _gnu.linkonce.t.*)
(*(.text.*personality*))
(-gnu.warning)

* .. refers to any section name (including user-defined
name) that is matched against the input section

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 253
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

name. It allows wildcard character *, which matches

zero or more characters.

input_section_setting ::= “(“num™)”

This setting fills input_section_pattern to align the
number that num denotes. num can be a decimal or
hexadecimal number.

input_section_Ima setting :@:=

LMALIGN “(**num>)” | LMA_FORCE_ALIGN

* LMALIGN aligns this section to the number that num
denotes.

* LMA_FORCE_ALIGN forces the LMA alignment of this

section to be the same as the VMA alignment.

group_input_section_pattern ::=
“[”” 1Input_section_pattern

(**,” input_section_pattern)* “J]”

Compared with input_section_pattern which
generates respective sections,
group_input_section_pattern generates only one
output section named as the first
input_section_pattern for the latter
input_section_patterns to join, avoiding the gap of
each section. For example,
* Example 1 (input_section_pattern) :
*(.text, .textl)
- Output: .text { *(.text) }
textl { *(-textl) }

e Example 2 (group_input_section_pattern):

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 254
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY

*([-text, .textl])

- Output: _text { *(.text, .textl) }

In Example 2, *([-text, .textl]) as
group_input_section_pattern generates only one
section while *(.text, .textl) asan
input_section_pattern in Example 1 generates two

sections.

ADDR [NEXT] variable

assigns the VMA to a variable. The variable consists of

letters, underscore and numbers. Note that its first

character must not be a number.

B NEXT is a keyword and must be upper-cased. If it is set,
the variable will be the VMA for the start of the next
section rather than that for the end of the previous
section.

LOADADDR [NEXT]

variable

assigns the LMA to a variable. The variable consists of

letters, underscore and numbers. Note that its first

character must not be a number.

B NEXT is a keyword and must be upper-cased. If it is set,
the variable will be the LMA for the start of the next
section rather than that for the end of the previous
section.

STACK ““=” num

assigns the stack address. STACK will generate PROVIDE
(_stack = num) ; into output script; num can be a decimal or
hexadecimal number.

VAR variable “=”

defines a variable and its value. The variable consists of

expression letters, underscore and numbers. Note that its first
character must not be a number.
B The expression here is identical to C expressions, but it
only allows “+, -, *, /”.
variable “=" ALIGN ALIGN sets a variable to the location counter aligned to the

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 255
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 émgggf

“““num™)” next alignment boundary. If the variable name is “.” it
adjusts the location counter to the next alignment
boundary.

Example [~ - g

o programl o) KéEP (ek, +RO) ; the output section will include the
progriﬁ °s _text and read- -onlly sections as its input section and it
S will QEheé—ekimifated by gc-section
® ADDR data start /; assigns the VMA to _data start

® L OADADDR data start
® STACK = 0x200000
® VAR my_var = 0x1000

; assigns the LMA to _data start
; assigns the stack address to 0x200000

defines a custom variable my var and sets its
value as 0x1000

Notes
® To avoid ambiguity errors, take note not to import input_section_descriptions
using the same module_select_patterns along with duplicate
input_section_selectors in a description file. The following examples present
illegal usages from Example 1 to 3 and legal usages from Example 4 to 6.
* Example 1 (illegal):
*(.text)
*(.data, .text)
* Example 2 (illegal):
*(+R0O)
*(+R0O-CODE)
* Example 3 (illegal):
hello.o (+RW-DATA)
hello.o (+RW)
* Example 4 (legal):
hello.o (.text)
*(.data, .text)
* Example 5 (legal):
hello.o (+RO)
*(+R0O)
* Example 6 (legal):
*(.text)
*(+R0)

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 256
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggﬁ,

15.1.2.5 Execution Overlay Region Description
Syntax
exe_overlay _region_description ::=

exe_region_name (address|] (“+° offset)) [exe_attr] “OVERLAY" pagesize

:‘{:‘ - = ‘
(overlay_input_section_description)+
“}17 } [
where
exe_region_name consists of letters, underscore and numbers. Note that the
first character must not be a number.
address can be a decimal or hexadecimal number.
offset can be a decimal or hexadecimal number. If it is used in the
first execution region in the load region, then +offset
means that the base address begins offset bytes after the
base of the containing load region. Otherwise, it means
offset bytes beyond the end of the preceding execution
region.
exe_attr is defined as “ALIGN alignment” where
B ALIGN is a keyword and must be upper-cased.
B alignment can be a two-to-the-power decimal or
hexadecimal number.
OVERLAY is the keyword and it must be the upper case.
pagesize is the size of each overlay page. When it is set to O, software

overlay is used.

overlay_input_section_description Please refer to Section 15.1.2.6.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 257
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- .
Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

15.1.2.6 Overlay Input Section Description

Syntax

overlay input _section_description ::=

(output_section name “f*“(module_select pattern [input_attr]+
“(”input;sect?:orl__sileﬁtar C“,”

,”” input_section_selector)* “)” ”}7) +

\7 Fa) aldaYala
where | RE {L‘ 1S

N C OO T

output_section_name consists of letters, underscore and numbers. Note that the

first character must not be a number.

modulle_select_pattern is the same as module_select_pattern in Section 15.1.2.4.

input_attr is the same as input_attr in Section 15.1.2.4.

input_section_selector jsthe same as input_section_selector in Section

15.1.2.4.

I
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Page 258
Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- i
Andes Programming Guide for ISA V3 éﬂggé

15.1.2.7 Examples

® Example 1:
LOAD_ROM 0x10000 ; ROM starts from 0x10000
{
EXEC : JRAM starts form 0x10000
. 1 Offichal
* s /kead-only section®s VMA = LMA
, (Release Y
EXEC_ROM 0x20000
{
*(+RW,+Z1) ; read-write and zero-init"s VMA starts from 0x20000
; LMA follows RO section
be
be

® Example 2 (overlay):

USER_SECTIONS .overlayO, .overlayl, .overlay2
ROM Ox0 ;LMA start address OxO

{
RAM Ox0 ;VMA start address 0x0
{
*(+R0O, +RW, +ZI) ;put all generic section here
STACK = 0xA00000 ;assign stack address
he
he
ROM_OVLY 0x14000 ;LMA start address 80K
{

RAM2 0x4000 OVERLAY 0x2000 ;VMA start address 0x4000. using overlay,
each overlay pagesize is 0x2000
{
.overlayO {* (.overlay0O)};LMA 0x14000, VMA 0x4000
.overlayl {* (.overlayl)};LMA 0x16000, VMA 0x6000
.overlay2 {* (.overlay2)};LMA 0x18000, VMA 0x8000
}

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 259
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

15.2. Linker Script Generator (LdSaG)

With a SaG-formatted script file in hand, you can use the command option nds_ldsag to
generate a corresponding.linker.script. Its usage is as follows:

$ -/nds_lds?g L
-/nds_ldsag i \[opitioa] —fFide

Options:
-t FILE_NAME //Read the template file, for advanced users only
//The default template file is nds32_template.x in
//Linux and nds32_template.txt in Windows
-0 FILE_NAME //0utput a file with the specified fTile-name

If the output filename is not specified, Andes linker will generate a linker script using the default
output name nds32. Id.

The following example demonstrates how to use nds_Idsag to generate a linker script with
a .sag file:

Step 1 Write a SaG-formatted description file like test.sag below:
LOAD_ROM 0x10000 ; ROM starts from 0x10000
{
EXEC_RAM 0x10000 ; RAM starts form 0x10000
{
*(+RO,+RW,+Z1) ; put read-only, read-write, zero-init
; into ROM and RAM
}
}
Step 2

Use nds_ldsag to read the description file and output a linker script
in the given filename.

./nds_ldsag test.sag -o myldscript

A linker script is generated; in this case, it’s myldscript.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 260
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- .
Andes Programming Guide for ISA V3 éﬂ&&g

Note that nds_ldsag may not support Cygwin path format since it is
built by MinGW toolchain. Thus, DOS path format is recommended if

you have to use an absolute path. For example,

e e e —
C:/Ahdqéféch(AndeSight/ide/workspace/helIo_world/test-sag -0
C:/Andesteéh/AhdeSight/ide/workspace/helIo_world/myldscript
‘7/ _ - =Y oy a
[\‘f‘{ —CdoC

Step 3 Use the newly-generated linker script to compile an object.

nds32le-elf-gcc -WI,-T,myldscript hello.c -0 a.out

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 261
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂgisv

16. Object Files

16.1. ELF file

ELF stands for Executable and Linking Format. Currently, this is the only format supported by
Andes toolchains.

There are three types of ELF object files:
1. Relocatable file is for linking with other object files to create an executable or a shared
object file.
2. Executable file is a program suitable for execution.
3. Shared object file is either for link editor to link with other relocatable and shared object
files to create another object file or for dynamic linker to link with an executable and

other shared objects to create a process image.

Please refer to Tool Interface Standard (TIS) Executable and Linking Format (ELF)
Specification for more details.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 262
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

n o
TECHNOLOGY

Andes Programming Guide for ISA V3

16.2. Examine ELF file

The following tools can be used to examine ELF files:
1. nds32le-g
2. nds32lete If—ﬁd@mﬁ?igass‘embles instructions or dumps section data.

lays all kind of information in an ELF file.

- L AnCH

D ~
| - - R») ,] .
Please refer to thé\@l\ﬁfB nutils documnent for more details,

Here is a partial listing generated by the command line “nds32le-elf-readelf —a libc.a”
File: libc.a(lib_a-_Exit.o)

ELF Header:
Magic: 7f 45 4c 46 01 01 01 00 00 00O OO OO OO OO OO 0O
Class: ELF32
Data: 2°s complement, little endian
Version: 1 (current)
OS/ABI : UNIX - System V
ABI Version: 0
Type: REL (Relocatable file)
Machine: Andes Technology compact code size embedded RISC processor family
Version: Oox1

Entry point address:
Start of program headers:
Start of section headers:
Flags:

Size of this header:
Size of program headers:

Number of program headers:

Size of section headers:

Number of section headers:

0x0

0 (bytes into file)

176 (bytes into file)

0x30000042, AABI, Andes ELF V1.4, Andes Star v3.0
52 (bytes)

0 (bytes)

0

40 (bytes)

10

Section header string table index: 7

Section Headers:

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al
[0] NULL 00000000 000000 000000 00 0O 0O
[1] -text PROGBITS 00000000 000034 000000 OO AX O O 1
[2] .data PROGBITS 00000000 000034 000000 OO WA O 0 1
[3] -bss NOBITS 00000000 000034 000000 OO WA O O 1
[4] -text. Exit PROGBITS 00000000 000034 000006 OO AX O O 2
[5] -rela.text._Exit RELA 00000000 00028 000018 Oc 8 4 4
[6] -comment PROGBITS 00000000 00003a 00002fF 01 MS O O 1
[71 -shstrtab STRTAB 00000000 000069 000046 00 0O 0 1
[8] -symtab SYMTAB 00000000 000240 0000a0 10 9 8 4
[9] -strtab STRTAB 00000000 0002e0 000018 00 0O 01

Key to Flags:

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 263
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂgoﬁgsv

W (write), A (alloc), X (execute), M (merge), S (strings)
I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)
O (extra OS processing required) o (0S specific), p (processor specific)

There are no section groups in this file.

There are n
Relocation
Offset

00000000 00 oBceJ @@Sﬁx

00000002 000

xit" at offset Ox2f8 contains 2 entries:
ym.Value Sym. Name + Addend

ENT 00000000 .text._ Exit + 3000000c
REL_ 00000000 _exit + O

The decoding of unwind sections for machine type Andes Technology compact code size embedded
RISC processor family is not currently supported.

Symbol table ".symtab®™ contains 10 entries:

Num: Value Size Type Bind Vis Ndx Name
0: 00000000 0 NOTYPE LOCAL DEFAULT UND
1: 00000000 0 FILE LOCAL DEFAULT ABS _Exit.c
2: 00000000 O SECTION LOCAL DEFAULT 1
3: 00000000 O SECTION LOCAL DEFAULT 2
4: 00000000 0O SECTION LOCAL DEFAULT 3
5: 00000000 0O SECTION LOCAL DEFAULT 4
6: 00000000 0 NOTYPE LOCAL DEFAULT 4 $c
7: 00000000 O SECTION LOCAL DEFAULT 6
8: 00000000 6 FUNC GLOBAL DEFAULT 4 Exit
9: 00000000 0 NOTYPE GLOBAL DEFAULT UND _exit

No version information found in this file.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 264
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂgisv

17. Andes MCUIib

17.1. Features of MCUIib

While Newlib toolchains are used to build for performance and better integration compatibility
with other software packages,"MEUlb toolchains are recommended when aiming to build for
better code size. Unlike Newlib, MCUIlib doesn’t support reentrancy and has its own printf

implementation. The following section introduces MCUIib-specific printf implementation.

17.2. MCUIib printf Implementation

Name
printf

Syntax
int printf (const char *format, ...)

Where the format has the following form:
[flag][field width][.-precision][modifier][conversion]

And, the following are the characters supported in MCUIib printf’s format specification fields:

Field Supportive Character Description
Flag - left justify, pad right with blanks
0 pad left with O for numerics
+ always print sign, + or -
alternate form
T (blank)
field width (field width)
precision (-precision)
modifier I long long (64-bit) int
h short (16-bit) int
I long (32-bit) int

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 265

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY
conversion d,i decimal int

u decimal unsigned

0 octal

X, X hex
Teeyoih £4G float

c char

S string

p pointer

Return Value

total number of characters output

Note

1. Normally compiler will use printf() to handle the parameter list of printf() except for
the case that if the parameter list of printf() contains only format string, GCC compiler
will translate it to puts().

2. For any target platform, the lower-level function of printf must be implemented in order
to actually output printf message. In Andes evaluation board, it is done in libgloss with
syscall mechanism. For users’ own target boards, one of the following can be done:

(1) Rewrite “putchar ()” function to ensure the message can output to the users’ boards: A
step recommended for MCUIib since it is efficient and can produce the smallest code size.
The prototype of putchar() in MCUIib is the same as that in standard C library. Note
that for MCUIib from BSP v3.1.2 and later versions, both nds_write() and putchar()
must be used to output printf message. The implementation of nds_write() isas

follows:

void nds_write(const unsigned char *buf, Int size)

{
int i;
for (i = 0; 1 < size; i++)

putchar(buf[i]);

Page 266

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

NOTE: In addition to printf implementation, nds_write() also can be used to avoid

errors when users use MCUIib and specify “~nostartfiles” option.

(2) Rewrite “_fstat()” and “_write()” function of libgloss: A step that works for MCUIib
from BSP v34:0.and eaTIiervérsions and Newlib. It provides a syscall mechanism rather

than function call for printf lower layer function implementation. _fstat() will be
called before \x i te©' and.its implementation is as follows:

struct stat;

int fstat(int fd, struct stat *buf)
{

return O;

}

The prototype of _write() is shown below and it’s declared in unistd.h. Users have to

handle all necessary jobs (for example, to handle outputs to files or STDERR) in their
own _write() function.

int _write(int _ fd, const void *_ buf, int _ nbyte);

The figure below illustrates the complete printf implementation on users’ boards in

comparison to that on Andes evaluation board. The parts in red fonts denote where need
users’ implementation.

-
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,

reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.
Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 267

Andes Programming Guide for ISA V3

ANDES

TECHNOLOGY

printf implementation on
Andes evaluation board

printf implementation on users’ boards

(default)

{recommended

(alternative for both
for MICUIib)

MCUIlib and Newlib)
Figure 9, printf Implementation on Andes Evaluation Board and on Users’ Boards

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed

reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation
Andes_Programming_Guide_for_ISA_V3_PG0O10_V1.6

Page 268

Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

17.3. Building Libgloss

Step 1 Extract libgloss.tgz under the path BSP_ROOT/demo/:

$ ftar, zxvf libgldss.tgz

|
Finh’libgloésQndSSZ—src folder generated under the same directory.

It includes the following items: a Makefile, a README and a

libgloss-nds32 folder containing libgloss source code files.

Step 2 1Include the appropriate toolchain in environment variable PATH.

$ export PATH=$PATH:/BSP_ROOT/toolchains/TOOLCHAIN/bin

Step 3 When building libgloss for the first time, please skip this step.

Otherwise, remove the existing object files and libgloss.a in the

current directory.

$ make clean

Step 4 Build libgloss and generate object files.
$ make all

——
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 269
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂgisv

18. Virtual Hosting

Via Virtual Hosting; 17O requests oftarget boards without 1/0 devices can be directed to GDB on
the host side, thereby.accelerating development processes and shortening development cycles.
For example, testingtodel coverage-(gcov) has to write the code coverage data to files. By Virtual

Hosting, it still carbe-supported.on-target boards that don’t have 170 devices.

Virtual Hosting is only supported for V3-family MCUIib and Newlib toolchains (including v3, v3j,
v3f, v3s, v3m and v3m+ toolchains). In BSP v3.2, Virtual Hosting is implemented in ICEman.
Starting from BSP v4.0, a more generic method is used to support Virtual Hosting on both real

boards (ICEman) and the simulator.

To enable Virtual Hosting in BSP v4.0 and later versions, please add “-mvh” option when
invoking GCC to compile and link programs. This option will link the programs with a Virtual
Hosting library where functions redirect 1/0 requests to ICEman or the simulator. These
requests will then be passed to GDB, invoking 1/0 services on the host side and sending results

back to ICEman or the simulator.

The following are low-level 1/0 functions supported by the current Virtual Hosting:
exit

open

close

read

write

Iseek

unlink

fstat

stat
gettimeofday
rename

isatty

system

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 270
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- i
Andes Programming Guide for ISA V3 éﬂ&ﬁé

These 1/0 functions may be interfered by Ctrl+C, leading Virtual Hosting to fail in the middle of
program execution. Thus, you should have your programs check the return code to see if Virtual
Hosting has been done successfully. You may retry the operation if necessary.

NOTE: (A fficia
1. If Virtual Hosting'is ena%’l’eé?‘avoi
_writeQ inNERBI€ 3 SE

2. Two functions of ANST CTibrary, ;mal loc_r() and _free_r(), may be called automatically

redirecting the output with putchar() in MCUIib or

when Virtual Hosting is enabled. In MCUIib, if the library memory allocation functions are
not suitable for your application, you should implement your own _malloc_r() and

_free_r(Q); in Newlib, you have to implement the two functions with _realloc_r().

_malloc_r(), _free r(),and_realloc_r() are the reentrant variants of malloc(),

free(), and real loc(). The prototypes of these functions are:

void *_malloc_r(struct _reent *reent_ptr, size t size);

void _free r(struct _reent *reent_ptr, void *ptr);

void *_realloc_r(struct _reent *reent_ptr, void *ptr, size t size);

If your functions don’t need the reentrancy, you can skip the _reent_ptr parameter and

implement these functions just as mal loc(), free(), and realloc().

These memory allocation functions dynamically allocate and free memory from the heap. In
Andes library implementation, the heap extends from (_end + 1024) until $sp.

text
.data
.bss

_end
Reserved

_end+1024
heap

$sp
stack

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 271
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂgisv

19. Advanced Programming Optimization

With Andes toolchaims;youcamusedifferent coding tips to make specialized optimizations for
Andes architecture. Thisichapterdntroduces some GCC compiler options to enable optimization,
EX9 optimizationamd WC pptimizationh, coding preferences (such as data type “int” and
auto/local variable).and-coding-techniques for special purposes (such as instruction “max” and

“min,” function with variable arguments and inline assembly language).

19.1. Optimization Options

There are lots of GCC compiler options that deal with optimizations. Here are some common

options and Andes GCC compiler options to control different sorts of optimizations.

19.1.1. Options for Code Size Optimization

B Compiler Options
-Os

Sometimes the code size optimizations may degrade the performance. Therefore, for V3 family
toolchains, three levels of code size reduction are also supported: -0s1, -0s2 and -0s3. Table 25
below provides detailed descriptions for the three levels.

Table 25. Three Code Size Optimization Levels of -Os

Option Code Size Optimization Level

0s1 Enable minimum code size optimizations.
-Os

Performance is still concerned.

052 Enable partial code size optimizations with little
-Os

performance concern.

0s3 (-08) Same as -0Os option. Enable all code size
-0s3 (-0s
optimizations. Performance may seriously drop.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 272
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂgisv

19.1.2. Options for Code Speed Optimization

B Compiler Options
-03
-funroll-l1oogps

-funroll-all-Aoops
-ftree-switch-shortcut
-malign-functiens
-malways-align

The followings are some notes you should pay attention when using these options:

1. For -03, sometimes the code size may increase dramatically after this option is applied.
This is because -O3 also implies -finline-functions that can expand the content of callee
within the caller (See Table 27 for enabled options at -O3). To avoid such function

inlining optimization, just use the option -fno-inline-functions.

2. For -funroll-loops and -funroll-all-loops, take note that unrolling loop is not
always good for performance on the platform with cache enabled. Therefore, please
refer to the descriptions in Table 26 and use these options wisely to meet your

requirement.

Table 26. Two Loop Unrolling Optimization

Option Description

Unroll loops whose number of iterations can be

determined at compile time or upon entry to the
-funroll-loops
loop. Compiler has a set of heuristics to estimate

whether to unroll loop or not.

Unroll all loops, even if their number of iterations
is uncertain when the loop is entered. This option
-funroll-all-loops
probably makes programs run more slowly if it

loses locality after unrolling.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 273
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggﬁ,

3. For -ftree-switch-shortcut, this isan EXPERIMENTAL option. For some
particular benchmarks involving complex switch statements, this option may be useful

to improve performance.

4. -mal ign-funct‘i dfs ialigns function entries to 4-byte boundaries and
—malways—}al 1gh enfarges-4-byte alignment on jump targets, return addresses and
function entries—~The-two-options are to prevent extra performance penalty due to
misalignment. They are not default applied at -Os (including -0s1, -0s2 and -0s3)
since they may slightly increase code size. However, they are enabled by default at most

of other optimization levels (see Table 27).

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 274
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂgisv

19.1.3. Options to Remove Unused Sections

To remove unused sections, the following compiler and linker options have to be enabled at the

same time:

B Compiler Options

-ffunction-sectiohs
-fdata-sections

B Linker Options
(gcc as linker) -Wl ,--gc-sections

(Id as linker) --gc-sections

These options are suggested to be used along with the option -WlI ,--print-gc-sections (gcc
as linker) or --print-gc-sections (ld as linker). By doing so, you can easily see what sections
are discarded by linker.

19.1.4. Options to Use EX9 Optimization

The “ex9” instruction can be used at link time optimization. To apply EX9 optimization, the
following compiler and linker options have to be enabled at the same time:
B Compiler Option
-mex9
B Linker Options
(gcc as linker) -WI, --mex9
(Id as linker) --mex9

Notice that -Os enables these options by default. If you do not want to apply EX9 optimization at

link time, use “-WI, --mno-ex9” (gcc as linker) or “~-mno-ex9” (Id as linker) to disable it.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 275
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggﬁ,

19.1.5. Options to Use IFC Optimization

The “ifcall”, “ifcal19” and “ifretl6” instructions can be used at link time optimization. To

apply IFC optimization, the following compiler and linker options have to be enabled at the same
time: - ~ ‘

B Compiler Option
[
-mifc \

B Linker Options
(gcc as linker) -wl ,--mifc

(Id as linker) —--mifc

Notice that -Os enables these options by default. If you do not want to apply IFC optimization at

link time, use “~WI, --mno-ifc” (gcc as linker) or “~-mno-ifc” (Id as linker) to disable it.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 276
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggé

19.1.6. Notice on Some Optimization Options

Compiler assumes that a valid program must be well-defined by the C language standard. If
there is any undefined behavior in your program, the result is unpredictable and unexpected
consequence could ocCuf-anytime, This section describes some optimization options that may
help you to detect undefined behavior of your programs in the early stages. These options may
also be workarounds if'youthave-no-choice but to write invalid programs for some reason. Please

be aware of each option’s behavior and effects before leveraging them in various cases.

B -fno-delete-null-pointer-checks
In the C language standard, programs cannot safely dereference null pointers, and no code or

data element resides there. However, this assumption is not true in some cases, especially for
embedded platform. Thus, if you have to dereference the memory address 0x0O0000000,
please use -fno-delete-nul l-pointer-checks to tell compiler not to optimize out null
pointer checking.

B -fno-strict-aliasing
In the GCC compiler framework, it enables strict aliasing optimization at -Os, -O2, and -0O3,
assuming the strictest aliasing rules applicable to the language being compiled. If a program
contains pointer casting, it may break the strict aliasing rule. Therefore, it would be better
not to use pointer casting in your programs. If you must use it, having the option
-fno-strict-aliasing is recommended. Otherwise, the execution result may be

unexpected.

B -fwrapv
The C language standard considers the overflow of a signed value is undefined behavior. That
means a valid program must never generate signed overflow when computing an expression
and the compiler is able to perform some optimization under such condition. If you must
have invalid code containing signed overflow, please compile it with -fwrapv, which tells the

compiler to treat signed overflow as wrapping.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 277
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éuﬂQ_OEGsv

19.1.7. Optimization Levels and Default Applied Options

The following summarizes the optimization levels that Andes compiler supports:

-00 Do not optimize.

-0Og Optimizefor-speed-with better debuggability than -01
-01 Optimize for speed

-02 Optimize-more for-speed

-03 Optimize most for speed

-0s1 Optimize for size

-0s2 Optimize more for size

-0s3 Optimize most for size
You can also use Andes target specific options (see Section 2.2.1) to tune performance and code

size. Some target options have been enabled at certain optimization levels by default. Please

refer to Table 27 below for their default applied scenarios:

Table 27. Default Applied GCC Options at Each Optimization Level

Mnemonic -00 | -Og | -01 | -02 | -03 | -0s1 | -0s2 | -0s/-0s3
-fomit-frame-pointer v v \% \% \% \% % \%
-fno-delete-null-pointer-
checks v v v v v
-finline-functions '

-mrelax \% v \% \% \% \% % v
-malign-functions v v v v

-malways-align v \% \% \%

-minnermost-loop v

-mex9 '
-mifc '

Note that options that are not default applied at some optimization level can still be turned on

when you issue them. Similarly, using -fno-omit-frame-pointer,

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 278

Andes Programming Guide for ISA V3 éﬂggﬁ,

-fdelete-null-pointer-checks, -fno-inline-functions, -mno-relax,
-mno-align-functions, -mno-always-al ign, -mno-innermost-loop, -mno-ex9, and

-mno-ifc can avoid the options in Table 27 from being enabled at their respective “default

applied optimization levels.”

Among the options in Table 27, -mrelax, -mex9, and -mi fc are special cases for code generation.
They do not actually‘ change-assembly ¢ode but generate directives to mark optimization
candidates for linker. GCC then will pass --relax, --mex9, and --mifc to linker to guide it
physically perform particular optimizations. If you ONLY invoke GCC to compile programs into

an object file, these three options have no effect on code generation.

Note that Table 27 describes the option applied scenarios for BSP v4.0 and later versions. For

toolchains from BSP v3.2, these scenarios are mostly the same except for the followings:

1. The option “~fno-delete-null-pointer-checks” is not supported in BSP v3.2.

2. InBSPv3.2, some additional options are enabled by default at certain optimization levels, as
shown below:

Optimization Default-applied Options
levels (in addition to those in Table 27)

-03 -fno-function-cse

-0sl -fno-jump-tables

-0s2 -fno-jump-tables

-fno-function-cse
-fno-jump-tables

-0s/-0s3
-fno-inline-small-functions

-fno-schedule-insns

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 279
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggﬁ,

19.2. EX9 Optimization

The 16-bit instruction EX9.IT (Execution on Instruction Table) fetches an indexed instruction

from the 512-entry’Instruction Jable and executes it.
N

When the “—mex97 gption;is applied, the compiler will generate the EX9 table and replaces
A\ = ‘
suitable 32-bit instructions with the 16-bit “ex9. it <INDEX>" with <INDEX> pointing to the

corresponding 32-bit instruction. For example:

With EX9 Opt.

ex9.it #1 !1bsi $r0,[$r14+#0x0]

EQM .ex9.itable:
" sb $r0,[$r7+($r6<<#0x0)]
Ibsi $r0,[$r14+#0x0] Ibsi $r0,[$r14+#0x0]

NOTE: For v3/3j/v3s/v3f toolchains before BSP v4.0.0, the EX9 table with only one entry is still
generated even when the “—mex9” option isn’t applied. This is for the backward compatibility

issue for debuggers. This overhead has been removed since BSP v4.0.0.

There are two choices for EX9 table implementation:
1. Hardwired in the CPU RTL with no cycle penalty.

2. Residing in memory pointed to by $1TB register for flexibility (2-cycle penalty).
EX9.1T:
IT (Hardwired IT) {
Inst = Instruction_Table[immOu];
}else{
Addr= IT _Base + (index * 4);
Inst= fetch(Addr);

by
Execute(lnst);

If the EXO9 table resides in memory, $1TB must be initialized with the symbol
_1TB_BASE_ before the EX9 table is used. This action should be done in crt0.S. Please

reference Section 9.3 for details.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 280

Andes Programming Guide for ISA V3 éﬂggﬁ,

The EX9 table should also be placed correctly in the linker script file by putting the following line
after RO code:

KEEP(*(.ex9.itable))

However, if the linkekscript firld is'generated by the LdSaG utility, you will not need to do

anything. }

19.2.1. Export and Import

The EX9 table can be exported by a linked module and used by another separately-linked module.
This is useful when doing ROM patch. “-Wl, -mexport-ex9” and “-WI, -import-ex9” options

are used to do export and import. For example,

nds32le-elf-gcc main_program.c -o main_program.out -mex9
-W1, --mexport-ex9=ex9.table

nds32le-elf-gcc rom _patch.c -o rom_patch.out -mex9
-W1l, --mimport-ex9=ex9.table

rom__patch will use the EX9 table generated when compiling main_program.

19.2.2. EX9 Table Shared by Multiple Separately-linked Program Modules

A more advance usage of EX9 optimization is sharing EX9 table by multiple separately-linked
modules. “-WI , --mupdate-ex9” option is used to update the imported EX9 table and
“~WI,--mex9-limit” option can limit the number of EX9 entries used by one module. For
example, if there is a library containing common functions shared by app-1 and app-2, the

following commands can share EX9 table among lib, app-1, and app-2.

nds32le-elf-gcc lib.c -o lib.out --mex9 -WI,--mgen-symbol-ld-script=lib.Ild
-WI, --mexport-ex9=ex9.i1table -WI,--mex9-1imit=100

nds32le-elf-gcc lib.out app-1.c -0 app-1l.out --mex9 -WIl,-T,lib.Id
-WI,--mimport-ex9=ex9.itable --mupdate-ex9 -WI,--mex9-1imit=200

nds32le-elf-gcc lib.out app-2.c -0 app-2.out --mex9 -WIl,-T,lib.Id
-WI,--mimport-ex9=ex9.1table -WI,--mupdate-ex9 -WI,--mex9-1imit=200

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 281
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

If the compiler can find the instructions to translate ex9. it more than the limit of lib(100),
app-1(200), and app-2(200), 1-100 entries is used by lib, 101-300 entries is used by app-1, and
301-500 entries is used by app-2. If lib only use A entries (<100), app-1 only use B entries
(<200), and app-2 only use C entries (<200), lib will use entries from 1 to A, app-1 will use
entries from (A+1) td (A+B), anp app-2 will use entries from (A+B+1) to (A+B+C) entries.

——
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 282
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

19.3. IFC (Inline Function Call) Optimization

IFCall9 (16b), IFCall (32b) and IFRet16 (16b) instructions are used to share the common code

sequence as inlinefunctions. , | -
i c
IFC_CTLBtheUSﬂremémrwthﬁeM$
IFC_LP records-the-PC-of-the instructions after IFCall9/1FCall
IFC_ON is set when IFCall9/1FCall is executed and cleared on IFRet16

IFCall9/IFCall:

behave as a jump-and-link

IFC_LP= return address;
IFC_ON= 1;

IFretl6:
I¥ (IFC_ON) {

Jump to IFC LP;

IFC_ON= O;
Yelse{
Do nothing
}
For example:

Original With IFC Opt.
AAA AAA
addrl,r2,r3 IFCall9 L1
subr4, r4,r1 BBB
and r5,r4,r2 Ll:addrl,r2,r3
BBB subrd4,r4,rl
addrl,r2.r3 andrS, rd4,r2
sub r4.r4.r1 IFRetl6
and r5.r4.r2 cCccC
cccC

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 283
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 é.!ﬂggé
NOTE:
1.

IFCall is a pc-relative instruction, so the distance between caller and callee must be within
its branch range, +-16M. Otherwise, it may cause error

2. IFC_LPshould
switching. OfﬁC|a|
Release

and restored in interrupt handlers and the context

I
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed

reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation
Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 284

Andes Programming Guide for ISA V3 éﬂggﬁ,

19.4. Zero Overhead Loop Optimization

ZOL (Zero Overhead Loop) is a set of mechanism in Andes DSP ISA extension to speed up

performance of logps. Rather than exploiting an explicit branch instruction, it improves the loop

performance by setting up the Igop starting address, the loop ending address and the loop count

»,
number. \

You can use the compiler option “-mext-zol” to generate code with zero overhead loops. For

example, given a function “foo” like below,

void foo(int size, Int *arr)
{
int 1;
for (i = 0;i < size;i++)
arr[i] = 1;

Its compilation results without and with -mext-zol are listed respectively as follows:

When compiled with -0 -0 -mext-zol

foo: foo:
blez $ro, .L2 blez $ro, .L2
movi55 $r5, O movi55 $r2, O
.L3: sub45 $r0, $r2
swi333.bi $r5, [$rl], mtlbi .L3
4 mtlei .L5
addi4s $r5, 1 mtusr $ro0, LC
Compilation result bnes38 $r0, .L3 isb
-align 2 _L3-
-L2: swi333.bi $r2, [$ri], 4
retb5 _L5-
addi45 $r2, 1
.align 2
L2:
retb5

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 285
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éuﬂQ_OEGsv

Shown in the above table, the compilation result with ZOL saves a conditional branch, which is a
saving of 2~3 cycles per iteration (assuming swi333.bi and addi45 is one cycle and bnes38 is

two cycles) and a performance gain up to 200%.

19.4.1. Zero Overhead|Loop Optimization Limitations

Both the hardware and compiler have limitations on performing the zero overhead loop
optimization. From the hardware side, Andes architecture doesn’t allow nested zero overhead
loops. For a function containing a nested loop like below, the hardware can only perform the
zero overhead loop optimization on one loop, either the outer or the nested, while the compiler

prefers it on the outer for minimizing initialization overhead.

void bar(int sizel, int size2, int **arr, int val)

for (1 = 0;1 < sizel;i++) // Outer Loop
for (J = 0;jJ < size2;j++) // Nested Loop
arr[1]1[3]1 = val;

On the other side, the compiler doesn’t have enough information about whether the inner
function uses hardware loops or not. Thus, the loops for the ZOL optimization must contain
function calls that can be inline. The following code fragment, then, won’t allow the ZOL

optimization.

int bar(int n);
void foo(int size, Int *arr, int val)
{
int 1;
for (i = 0;i < size;i++)
arr[i] = bar (val);

}

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 286
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éuﬂQ_OEGsv

19.4.2. Disable ZOL Optimization for Specific Functions or Loops

Even though the zero overhead loop optimization significantly increases the performance of

loops in most cases,.it.incurs.initialization cost of at least 4 extra instructions and 5~10 cycles,

varied by architecture. That is, het every loop can benefit from this optimization. Since the
compiler doesn’t have endugh-funtime information about the number of iteration and
-mext-zol is a global-fltag-to-the-compilation unit (i.e. single file), a function attribute
“no_ext_zol” and a built-in function “__ nds32_ no_ext_zol” are introduced here to disable

the ZOL optimization for a specific function and loop respectively.

The function attribute “no_ext_zol” can disable the ZOL optimization for specific functions

when the compilation flag -mext-zol is applied. See the following example for its usage:

int foo(int, int *, int) _ attribute__((nho_ext_zol));
int foo(int size, int *arr, int val)
{
int i;
for (i = 0;i < size;i++)
arr[i] = val;

The function*__nds32__no_ext_zol” can disable the ZOL optimization for specific loops. The
following is an example that the compiler tends to perform the ZOL optimization on the outer
loop but that on the inner loop is more profitable. In this case, the function

“ nds32_no_ext_zol” can be used to disable the ZOL optimization for the outer loop.

#include "'nds32_intrinsic.h"

void bar(int sizel, int size2, int **arr, int val)

int i, j;
for (i = 0;i < sizel;i++)

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 287
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- .
Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

__nds32__no_ext_zol ();
for (j = 0;j < size2;j++)
arr[i][j] = val;

Dfficial

For a function that @Maﬂoop§bgt only one loop can gain from the ZOL optimization, you can

use“ nds32__no_ext_zol” to disable the ZOL optimization for a loop too, as exemplified
below:

#include ""'nds32_intrinsic.h"

void foo(int size,

int *arr, int val)
{
int i;
for (i = 0;i < size;i++)
arr[i] = val;
for (i = 0;i < size/2;i++)
{
__nds32__no_ext _zol ;
arr[i] = arr[i1] + 3;
3
3

-
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,

reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.
Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 288

Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

19.5. Instruction Max/Min of Performance Extension

AndeStar ISA performance extension offers instruction "max" and "min" to write maximum and
minimum values from.source.registers to destination registers. Andes GCC takes advantage of
thenNoinschﬁonstogéhéﬁﬂ@Opﬁnﬂzedcodeforbeuerspeajandcodesue.Toevoke"max"

and "min" instructions, use ternary operators in the following formats:
Re :

(a>Db) ? a: b; // generate instruction max; same for (a>=b)
(a<b) ? a: b; // generate instruction min; same for (a<=b)

0
I}

Example-max-min-1 demonstrates the use of ternary operators to evoke instruction “max” and
“min”:

/* Example-max-min-1 */

int func_max _min_1 (int i, Int j, int k, int 1)

{

int max
int min

a>p7?1i0:];
(k<=D 2?2k -1

return max + min;

Example-max-min-1 will be compiled with the compiler option "-01" to the following assembly
code if Andes GCC is configured to use instructions of performance extension:

func_max_min_1:
I begin of prologue
I end of prologue
max $ro, $rl, $r0
min $r2, $r2, $r3
add45 $r0, $r2
I begin of epilogue
rets5
I end of epilogue

——
The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 289
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

N
Andes Programming Guide for ISA V3 éﬂgggf

19.6. Primitive Data Type "int"

Since most instructions are designed for 32-bit operands in 32-bit CPU architecture, it is usually
better to declare a yariable.a.type.at.least 32 bits long. That is, when the size of variable storage is
not a concern, the primiti‘v‘é dafp type "int" is preferred to those less than 32 bits. The example

below shows the duteome,when declaring a variable a type less than 32 bits.
Re N ¢

/* Example-type-1 */

int
func_type 1 (int a, int b, int c)
{

short el, e2;

el
e2

a - b;
a + b;

if (el > e2)
return 13;

return 17;

}

The following assembly code is generated when Example-type-1 is compiled with the compiler
option "-01":

func_type 1:
I begin of prologue
I end of prologue
zeh33 $r0, $r0
zeh33 $ri, $ri
sub333 $r2, $ro, $ri
add5 $ro, $ri
seh33 $r2, $r2
seh33 $r0, $r0
slts45 $r0, $r2
movi55 $r0, 13
movpi45%$ri, 17
cmovz $r0, $rl, $ta

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 290

- .
Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

I begin of epilogue
ret5
I end of epilogue

Since the variables “el...e2"are.declared as type "short" in Example-type-1, the instruction

"seh33" is required to eﬂfeﬁdrtﬁe’{effective bits of a register to 32 bits so that it can serve as a

324ﬂtoperandforimsnuTﬁonsfslts45"and"cmovzﬂ
N\CICdoC

[\

o

In contrast, in Example-type-2, "el, e2" are declared as type "int".

/* Example-type-2 */

int
func_type 2 (int a, int b, int c)
{

int el, e2;

el = a - b;

e2 = a + b;

if (el > e2)

return 13;

return 17;

}

The generated assembly code below shows that no extra instruction is needed to adjust the

property of variables "el, e2" for instructions "slts45" and "cmovz".

func_type 2:
I begin of prologue
I end of prologue
sub333 $r2, $r0, $ri
add45 $ro, $ri
slts45 $r0, $r2
movi55 $r0, 13
movpi45%rl, 17
cmovz $r0, $ri1, $ta
I begin of epilogue
rets
I end of epilogue

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 291
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggé

19.7. Addressing Space for Programs

It is easy to locate local variables because they are only accessed via frame pointer or stack
pointer within a staCK frame and Willhe destroyed at the end of the function. However, it is not
the case for global variables, whi€h are used to store information shared among functions and
tasks. In AndesCore ORW with-32-bit addressing space, accessing a global variable requires
several instructions-te-eenstruct-ful-32-bit address. Similar issues also appear on function call.
To call a module all over 32-bit addressing space, many instructions are also needed to calculate
32-bit address and then jump to the module via a register.

Instructions that always construct full 32-bit address could be serious issue on performance and
code size. Fortunately, most programs do not require complete 32-bit addressing space because
of limited resources (e.g. ROM size) in practice. You may improve the overall performance and
code size simply with the concept of small data area or using different code models in compiler

option.

19.7.1. Small Data Area and Relaxation

Small data area, abbreviated to SDA, is created to place global variables which can be addressed
by an offset plus register $gp. With the help of SDA, the two to three instructions generated to
access a global variable in SDA in compilation time can shrink to single instruction by relaxation

optimization in link time.

Andes SDA has the section .sdata_{b|h|w]d} for initialized global variables and

section .sbss_{b]h]w]d} for uninitialized ones in default linker script. Section suffix
_{b]h]w]d} is used to denote the size of a global variable to be {1]2]4]8} bytes respectively.
For uninitialized global variables, compiler will generate them as common symbols (. comm
symbol, [Iength). After linking, the symbols will be put into .sbss_x. If you are an assembly
programmer, you can put your symbols into .sdata_x and .sbss_x for relaxation optimization.

To understand how relaxation works in link time, here is an example:

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 292

o A
Andes Programming Guide for ISA V3 éﬂ&ﬁé

/* Example-global-1 */

int i;

int j;

int k; /

- | N\FFARrA1Aa h
int 1; . f?ﬂ@b_tj{

NAACAO

F:: Ty W« C
int func_dl é@é\#_{ “<($>F)
. \

return i + j + k + 1;

}

int main
{
return func_global 1 (;

}

To construct full 32-bit address for each global variable, it may generate assembly code like
below that takes at least 8 instructions to load values into registers:

func_global_1:
I begin of prologue
I end of prologue
sethi $r2, hi20(i)
Iwi $r1, [$r2 + lol2(i)]
sethi $r3, hi20Q)
Iwi $ro, [$r3 + 1012()]
add45 $rl1, $rO
sethi $r4, hi20(k)
Iwi $ro, [$r4 + l1ol2(k)]
add45 $rl1, $rO
sethi $r5, hi20(l)
Iwi $ro, [$r5 + lol2(D)]
add45 $r0, $ril
I begin of epilogue
ret5
I end of epilogue

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 293
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éuﬂQ_OEGsv

Incorporating the concept of small data area, it can generate the following assembly code where
global variables "i", "j", "k", and "1" satisfy the size and type requirement of section .sbss_w of

SDA and can be allocated there.

.comm i,4,4
.comm j,4L4
.comm k,4L4
.comm 1,44

After applying relaxation optimization with linker, instructions to access these global variables

are reduced to those with addressing of an offset plus $gp.

005000ec <func_global 1>:

5000ec: 3c 1c 00 87 Iwi.gp $rl, [+#0x21c]
5000f0: 3c Oc 00 84 Iwi.gp $r0, [+#0x210]
5000f4: 88 20 add45 $rl1,$r0
50006+ 3c Oc 00 86 Iwi.gp $ro0, [+#0x218]
5000fa: 88 20 add45 $rl1,$r0
5000fc: 3c Oc 00 85 Iwi.gp $rO0, [+#0x214]
500100: 88 01 add45 $r0,%$rl
500102: dd 9e rets $lp

The offset of variables in SDA is limited to +/- 256KB for all scalar data type of V3 architecture.
It is unknown if a global variable can be fitted in SDA until linking is done.

With the manipulation of relaxation optimization and SDA, the Example-global-1 can reduce the
instruction counts. However, due to the size limitation of instruction immediate, advantages of
relaxation optimization and SDA don’t always apply to global variables in large programs. In
such case, it is suggested to write programs that enclose variables in a global structure. That way,
the variables can be aggregated and compiler is able to access them with “base + offset” manner.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, Page 294

reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.
Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 é,ﬂgisv

19.7.2. Code Models

In Andes toolchains, you can tell compiler which scale your programs and data are with the
option —mcmode I =[smaldjmedium|large]. Specifying precise code models with this option is
helpful for code generation. With-¢learinformation, compiler may directly generate smaller and
better instructions without relax transformation by linker. The following are three supported

code models:

B -mcmodel=small (code model: 16M text, 512K data+rodata)
This option is generally suitable for most MCU programs. It tells compiler that all the
function modules must be within 16M range and the global variables, including read-only
data, are within 512K range. Compiler assumes that all the data is in the small data area and

generates addressing with offset plus $gp.

B -mcmodel=medium (code model: 16M text, 512K data, 4G rodata)
This is the default setting in Andes toolchains. For read-only data beyond 512K of small data
area, compiler will construct full 32-bit address when accessing them (constant variables).
The function modules are still within 16M range of text section; other global variables are

within 512K range of small data area and accessible with $gp relative instruction.

B -mcmodel=large (code model: 4G text, 4G data + rodata)
This is the option for large programs. All the text and data are all over complete 32-bit
addressing space. Compiler uses the most conservative strategy to generate worse assembly

code, leaving all the relaxation works to linker.

Page 295

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 é,ﬂgisv

19.8. Link Time Optimization in GCC

Link Time Optimization (LTO) is a very aggressive optimization implemented by GCC. It gives
GCC the capability of emitting.its.internal representation into object files, so that all the different

compilation unitsfthat make (p asingle executable can be optimized as a single module.

19.8.1. Using LTO

If you would like to apply LTO on your program, make sure you use GCC to complete all the
works of building a program, including compilation and linking. Then, compiler is able to

interact with linker plugin to perform optimization.

The option -flto triggers the main LTO features. Given several source files like below, you can
create an executable with this option:

$ gcc -02 -flto -c fl.c
$ gcc -02 -flto -c f2.c
$ gcc -02 -flto -o f f1l.0 f2.0

or
$ gcc -02 -flto -0 f fl.c f2.c

19.8.2. Notice When Applying LTO

Because LTO takes all objects as a single module to perform optimizations, there are some

limitations that you need to be aware of:

B Avoid defining the same module name as it’s presented in the library. This may confuse LTO
when linking objects.

B If you implement a module that may be called from the MCU standard library (e.g. the weak
function nds_write() redirected from libc.a), itis suggested to use
__attribute__ ((used)) to prevent it from being optimized out by LTO.

B Please make sure all the modules of the project are included in the build process. If your
project has something to do with patch code, which is invisible during LTO process, the

patch code module is not supposed to be compiled with the —flto option.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 2906
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂgisv

19.9. Function with Variable Number of Arguments

When there is a need to write a function with variable number of arguments like “prinf()”, an
ellipsis (“..”) can be.used.to.replace.the optional arguments. The declaration of such a function
requires at least one hamed argument before the ellipsis to denote the prototype of the list of

anonymous arguments, such as “int func(int x, ..)".
To load the values of the anonymous arguments, header file "stdarg.h" has to be included first
to introduce a special data type va_list and three macros va_start(), va_arg(), and

va_end() that manipulate the variable number of arguments.

Data type "va_list" is used to record the current information of the list of anonymous
arguments. It has to be initialized by va_start() with the named argument right before the
ellipsis. After va_start() is called, the value of each anonymous argument can be loaded
sequentially based on the information of "va_list". For each va_start(), va_end() must be
invoked in the same function to clean up the argument list allocated in the memory. Between a
pair of va_start() and va_end(), va_arg() is called successively to traverse the argument list
one by one. Thereby the value of a pointed argument from the list can be loaded by the current
variable with a specified type. The below gives an example of how va_list, va_start(),

va_arg(), and va_end() work in a function that accepts variable number of arguments.

/* Example-va-1 */
#include <stdarg.h>

void my printf (char* format, ...)
{

va_list ap;

int i;

int c;

long long int 11;

double T;

va_start (ap, format);

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 297
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 émgggf

i = va arg (ap, int);
/* “char® is promoted to "int® when passed through "..."
so you should pass "int" not “char® to "va arg®™ */

C = Va_alge(Ryt

Il = va_arg (ap, Iong‘long int);
‘ = = = =

‘ /'\ A
/* "floats—is—promoted—=tO "double® when passed through ~...

so you should pass “double” not "float®™ to "va arg® */
f = va_arg (ap, double);

printf (format, i, c, Il, F);

va_end (ap);

+
int main (int argc, char** argv)
{
my printf (""Hello: %d %c %101d %f\n"", 23, (char) *X*, (long long int) 12399,
3.41F);
return O;
+

In Example-va-1, one variable "ap" is declared as type "va_list", and it is initialized by
va_start() with the last named argument "format". Statement va_arg(ap, int) returnsa
value of type "int" and updates the content of variable "ap" to point to the next argument from
the list. Values of consecutive anonymous arguments can be loaded by successive calls of

va_arg() with a corresponding type in turn.

Note that an anonymous argument with type "char" and "short" will be promoted to one with
type "int" when it is passed from a caller function to callee function. So is an anonymous
argument with type "float" promoted to one with type "double". Thus, when loading values of
anonymous arguments, use type "int" or "double" for va_arg() rather than type "char",

"short", or "float".

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 298

Andes Programming Guide for ISA V3 éﬂgisv

19.10. Inline Assembly Programming

19.10.1. General
Inline assembly programming is a way, GCC provides to write assembly code embedded in C

program. The following displays‘the basic form of inline assembly programming:

asm__ (‘lan \assembly.toede) template"
: a Iist of output operands

: a list of input operands
: a list of clobber registers);

As shown above, an inline assembly statement startswith™ _asm _ (...)"or"asm (...)"and
includes four parts separated by colons: a string of an assembly code template, a list of output
operands, a list of input operands, and a list of clobber registers. The first part, an assembly code
template, contains the set of assembly instructions and is essential to inline assembly statement.
The rest three parts are used to fulfill the instructions and can be optional. The following gives
an example of an inline assembly statement that only has a string of assembly code starting with

a comment symbol as its output string.

asm__ ("! A test of inline assembly code™);

Since GCC can’t recognized the output string of an inline assembly statement, it simply outputs
that string enclosed in "#APP" and "#NO_APP" in generated assembly code. Then, the whole
assembly code can be validated and assembled by assembler.

An assembly instruction normally has an output operand and two input operands. An operand in
an assembly instruction is presented by a symbol "%" followed by a number starting from 0. In
Example-Asm-1, "%0", "%1", and "%2" represent three operands and GCC will replace them from
the output operand list to the input operand list when the output string of the assembly code

template is generated.
/* Example-Asm-1 */

int func_asm 1 (int i, int j)
{

int ret;

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 299
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éuﬂQ_OEGsv

_asm__ (add\t%0, %1, %2\n\t"
"movi\t$re, 123\n\t"
"add\t%0, %0, $r6"

D "=r (ret)
R RO BRSO
s a)

return ret;

}

From the above example, we can see that "\n\t" is used to separate an instruction from others

and "\t" to separate an instruction from its first operand in an assembly code template.

Each operand in the input/output operand list is specified by a constraint in double quotes and a
C expression in parentheses. In Example-Asm-1, "=r"" (ret), "r" (i) and"r" (j) are the cases.
A constraint of an operand is used to indicate the addressing mode. Constraint "r" means
operands should be placed in general registers and constraint modifier "="is used for output

operands, indicating the operands are write-only.

19.10.2. Symbolic Operand Name

Another way to specify an operand is to use a symbolic operand name in the form of “[name]” as
shown in Example-Asm-2. It’s quite flexible to give a symbolic operand names in that it has no
relation to any symbol table. Any name is valid no matter it is in C symbol or not, but be sure

that no two operands shares the same symbolic name in an asm statement.
/* Example-Asm-2 */

int func_asm 2 (int i, int j)

{

int ret;

__asm__ (Madd\t%[output], %[input 1], %[input 2]"
[output] "=r" (ret)
[input_1] "r* (1), [input_ 2] "r" ());

return ret;

}

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 300
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

- -
Andes Programming Guide for ISA V3 ANDES

TECHMNOLOGY

19.10.3. Clobber List

In a clobber list, registers or memory are listed to inform GCC that these items have been
modified. Registers used in an assembly code template have to be specified in the clobber list so
that GCC will assumethe contentof the registers are invalid after the inline assembly statement
and generate extra instructions \to maintain correct register status. In addition to registers,

"memory" can also b{e, listecin-aelobber list to make GCC update memory values.
/* Example-Asm-3 */

int func_asm 3 (int i, int j)
{

int ret;

sm__ (Madd\t%0, %1, %2\n\t"
"movi\t$r6, 12345\n\t"’
"add\t%0, %0, $re6"

D "=rt (ret)
SR O BN)
: U"$re");

return ret;

}

With the compiler option “-01”, Example-Asm-3 will be compiled as:

func_asm_3:
I begin of prologue
push.s $r6, $r6, { }
addilO.sp -4
I end of prologue

#APP
add $ro, $ro, $ri
movi $r6, 12345
add $ro, $ro, $r6
#NO_APP

I begin of epilogue
addilO.sp 4

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 301
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggﬁ,

pop.s $r6, $r6, { }
rets
I end of epilogue

In Example-Asm-37 GCC js informed that "$r6" will be clobbered by the inline assembly
statement, so it generates instru‘ctions to push/pop callee-saved register "$r6" in
prologue/epilogue iﬂp orderto-satisfy, ABI.

19.10.4. Read-write Operand

Each operand in the input and output operand list can be referenced by numbers from “0” to
“n-1"in increasing order, where n stands for the total number of operands. Thus, a constraint
with a number can be used to denote certain operand and furthermore manipulate read-write
operands. An operand that has the constraint “0” will be placed in the same location as operand
0, thus specifying a read-write operand. The rest read-write operands can be manipulated
likewise. In Example-Asm-4, "1" is used to allow the input operand [read_2] to have the same
register as the second output operand [write_2].

/* Example-Asm-4 */

int func_asm 4 (int i, int j)
{

int ret;

__asm__ (add\tw%[write_ 1], %[read 1], %[read 2]\n\t"
"movi\t$re, 12345\n\t"
“add\th[write_ 2], %[read_1], $r6"
: [write_1] "=r" (ret), [write_2] "=r" ()
: [read_1] "r (1), [read_2] "1™)

D V$re');

return ret +

}

(S

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 302
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggﬁ,

19.10.5. Constraint Modifier "&"

GCC may assume that input operands are read before output operands are written and then

allocate output operands in the same registers as unrelated input operands. However, such an

assumption doesn’'t apply whenithere is more than one instruction in the assembler code

template. Example-Asm-5 demonstrates this problem.
\

\
/* Examp le~Asm=5—*/

int func_asm 5 (int i, int j)

{
int retl, ret2;

asm__ ("movi\t%[write 1], 12345\n\t"
"add\tw[write 2], %[read 1], %[read_ 2]"
o [write_ 1] "=r" (retl), [write_ 2] "=r" (ret2)
: [read 1] "r" (i), [read 2] "r" ());

return retl + ret2;

}

Compile Example-Asm-5 using the option “-01":

func_asm 5:

#APP
movi $rl, 12345
add $ro, $ro, $ri
#NO_APP
add45 $ro, $ri
rets5

We can observe that the operand [read_27] uses the same register "$r1" as the operand
[write_1]. Since the first instruction clobbers the operand [read_ 2] when writing [write 1],
the second assembly instruction gets wrong content of [read_27]. To avoid this problem, apply
constraint modifier "&" to an output operand to inform GCC not to allocate the input and output
operands in the same registers. As shown in Example-Asm-6, constraint modifier "&" is used to

ensure all output operands reside in different registers from input operands.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Page 303

- -
Andes Programming Guide for ISA V3 émgggf

/* Example-Asm-6 */

int func_asm 6 (int i, int j)

{

int retl, ret2;

]

asm__ ("movi\th[write_1], 12345\n\t"
Wagd\t%[writeiZ], %[read_1], %[read_2]"
r—pweite—14——=&r" (retl), [write_ 2] "=&r" (ret2)
> [read 1] "r (i), [read 2] "r" (G));

return retl + ret2;

+
The assembly code of Example-Asm-6 shows no problem of overlapping registers:

func_asm 6:

HAPP
movi $r2, 12345
add $r3, $ro, $rl
#NO_APP
mov55 $ro, $r3
add45 $ro, $r2
rets5

19.10.6. Volatile

GCC may move or delete assembly statements in view of optimization strategy. For example, an
inline assembly statement to access hardware status without dependency on any instruction will
likely be removed by GCC optimization. To avoid these unwanted optimization effects, use
keyword " volatile_"or"volatile" after asm statement to switch off optimization and
preserve the inline assembly code.

asm__ _ volatile__ ('setend.b™);

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 304
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éﬂggﬁ,

19.10.7. Andes-specific Constraints

In the design of AndeStar ISA, the general registers are classified into three levels for 16/32-bit

instructions code generation and some instructions implicitly use particular registers. Therefore,

we provide following Andes—sp%cific constraints in addition to the general constraint "r" for
inline assembly programming.

B |: Low register ‘blass SO SSPT

d: Middle register class $r0 ~ $ri1, $ri16 ~ $ri9

h: High register class $r12 ~ $ri14, $r20 ~ $r31

t: Temporary assist register $ta (i.e. $ri15)

v: Register $r5

Example-Asm-7 below demonstrates the result of these special constraints, in which we
hold the value of variables i and j with high register class and assign the result to the
register $rs:

/* Example-Asm-7 */

int func_asm_7 (int i, int j)

{

int ret;

asm__ (add\t%0, %1, %2\n\t"
 "=vt (ret)
SN O NN E
return ret;
}
The assembly code generated with the option “~01” is shown below:
func_asm 7:

movd44 $r20, $ro ! $r20 €« $ro; $r21 <« $ri
HAPP

add $r5, $r20, $r21
#NO_APP

add45 $ro, $r5

rets

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 305
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

Andes Programming Guide for ISA V3 éuﬂQ_OEGsv

Appendix

Programming Tips

Move libc.a to-the beginning: of text section

The static libraries are normally at the end of text section. During the process of symbol
resolution using static libraries, linker scans the object files and archives from left to right
as input on the command line. If the input is an archive, linker scans through the list of
member modules that constitute the archive to match any unresolved symbols. That

explains why static libraries are placed at the end of the linker commands.

There are several methods to move libc.a to the beginning of text section. The following

Is an example achieved via modification of the linker script:

-text

{ /* output section rule */
/* exclude file input section rule */
(EXCLUDE_FILE(<your application object folder>/%)._.text
/* default iInput section rule */

*(.text)

The above modified linker script forces the object files under your application object folder
to be excluded in the beginning of text section, thereby enabling linker to place libc.ain
the beginning of text section.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed, P 306
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation. age

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

ANDES

Andes Programming Guide for ISA V3 TECHNOLOGY

Display register information and debug on reset by GDB commands

Andes provides GDB commands to display register information and to debug on reset.

Andes-defined GDBfebimmands to show the content of registers are —

info

info

info

info

info

info

info

info

info

registers

registers

registers

registers

registers

registers

registers

registers

registers

Ccr

dmar

dr

mr

pfr

racr

info registers all

lists all general purpose registers (GPR) and their contents for
selected stack frame (NDS32 specific command).

lists all configuration system registers (CR) and their contents
(NDS32 specific command).

lists all local memory DMA registers (DMAR) and their contents
(NDS32 specific command).

lists all EDM system registers (DR) and their contents (NDS32
specific command).

lists all implementation-dependent registers (IDR) and their
contents (NDS32 specific command).

lists all interruption system registers (IR) and their contents
(NDS32 specific command).

lists all MMU system registers (MR) and their contents (NDS32
specific command).

lists all performance monitoring registers (PFR) and their
contents (NDS32 specific command).

lists all resource access control registers (RACR) and their
contents (NDS32 specific command).

lists all registers and their contents (NDS32 specific command).

Andes also provide the following system-related GDB command to debug on reset.

reset-and-hold

To reset the target system and set PC to 0xO.

This command makes the debugger hold a CPU right after the reset of the debugging target

and is especially useful for boot code development.

The information contained herein is the exclusive property of Andes Technology Co. and shall not be distributed,
reproduced, or disclosed in whole or in part without prior written permission of Andes Technology Corporation.

Page 307

Andes_Programming_Guide_for_ISA_V3_PGO10_V1.6

	Revision History
	Table of Contents
	List of Tables
	List of Figures
	1. Overview
	1.1. What’s New Since BSP v4.0

	2. Getting Started
	2.1. Andes Instruction Set Architecture and Instructions
	2.2. Command Line Options
	2.2.1. Compiler Options
	2.2.2. Assembler Options
	2.2.3. Linker Options

	3. NDS32 Assembly Language
	3.1. General Syntax
	3.2. Registers
	3.2.1. General Purpose Registers (GPR)
	3.2.2. Accumulators d0 and d1
	3.2.3. Instruction Implied Registers
	3.2.4. Assembler Reserved Register $ta
	3.2.5. Operating System Reserved Registers $p0 and $p1

	3.3. Missing Operand
	3.3.1. Load/Store Instructions
	3.3.2. Branch Instructions
	3.3.3. Special Instructions

	4. Machine Instructions
	4.1. 32/16-bit
	4.2. Unaligned Data Handling
	4.3. Endianness

	5. Pseudo-ops
	5.1. List of Pseudo-ops
	5.1.1. GNU Default Pseudo-ops Supporting Sections
	5.1.2. Andes Pseudo-ops Supporting Sections
	5.1.3. GNU Default Pseudo-ops Supporting ELF
	5.1.4. Andes Pseudo-ops Supporting ELF
	5.1.5. Data Declaration Pseudo-ops
	5.1.6. Space Declaration Pseudo-ops

	6. Pseudo-instructions
	6.1. List of Pseudo-instructions
	6.1.1. Deprecated Pseudo-instructions

	6.2. Built-in Function Operators

	7. Macros
	7.1. Create Macros in Assembly Code
	7.2. Assembler Directives for Macros

	8. Application Binary Interface (ABI)
	8.1. Data Types
	8.1.1. Byte Ordering
	8.1.2. Primitive Data Types
	8.1.3. Composite Data Types
	8.1.3.1 Array Type
	8.1.3.2 Aggregate and Union Type
	8.1.3.3 Bit-field Type

	8.1.4. C Language Mapping of Andes Platform

	8.2. Calling Convention
	8.2.1. ABI2 (for v3, v3j and v3m Toolchains)
	8.2.1.1 Registers
	8.2.1.2 Stack Frame
	8.2.1.3 Argument Passing and Return
	8.2.1.4 Samples of ABI2

	8.2.2. ABI2FP+ (for v3s and v3f Toolchains)
	8.2.2.1 Registers
	8.2.2.2 Stack Frame
	8.2.2.3 Argument Passing and Return

	9. Andes Specifics
	9.1. Get PC
	9.2. Andes Predefined Macros
	9.2.1. Deprecated Predefined Macros

	9.3. Crt0.S

	10. Andes C Language Extension for Interrupt Service Routine (Not Supported on S801)
	10.1. Syntax for System Reset Handler
	10.1.1. Example

	10.2. Syntax for Interrupt Handlers
	10.2.1. Example

	10.3. Syntax for Exception Handlers
	10.3.1. Example
	10.3.1.1 Example of Skipping the Instruction that Causes the Exception

	10.4. Linker Options
	10.4.1. Linker Script

	11. ROM Patching
	11.1. Indirect Call Functions
	11.1.1. Implementation of Indirect Call Functions
	11.1.1.1 Apply Indirect Call Attribute to Function Declaration in Your Program or Header File
	11.1.1.2 Add .nds32.ict Section to Linker Script

	11.1.2. Limitations
	11.1.3. Tutorial

	11.2. Function Table Mechanism
	11.2.1. Implementation of Function Table Mechanism
	11.2.1.1 Add Function Table for Patchable Functions to Your Program
	11.2.1.2 Change Every Call-site for Patch-able Functions in Your Program
	11.2.1.3 Add Function Table Section to Linker Script

	11.2.2. Limitations
	11.2.3. Tutorial

	12. Andes Intrinsic Function Programming
	12.1. Summary of Andes Intrinsic Functions
	12.2. Detailed Intrinsic Function Description
	12.2.1. Intrinsics for Load/Store
	__nds32__llw
	__nds32__lbup
	__nds32__lwup
	__nds32__sbup
	__nds32__scw
	__nds32__swup

	12.2.2. Intrinsics for Read/Write System and USR Registers
	__nds32__mfsr
	__nds32__mfusr
	__nds32__mtsr
	__nds32__mtsr_isb
	__nds32__mtsr_dsb
	__nds32__mtusr

	12.2.3. Miscellaneous Intrinsics
	__nds32__break
	__nds32__cctlva_lck
	__nds32__cctlidx_wbinval
	__nds32__cctlva_wbinval_alvl
	__nds32__cctlva_wbinval_one_lvl
	__nds32__cctlidx_read
	__nds32__cctlidx_write
	__nds32__cctl_l1d_invalall
	__nds32__cctl_l1d_wball_alvl
	__nds32__cctl_l1d_wball_one_lvl
	__nds32__dpref_qw
	__nds32__dpref_hw
	__nds32__dpref_w
	__nds32__dpref_dw
	__nds32__dsb
	__nds32__get_current_sp
	__nds32__get_unaligned_dw
	__nds32__get_unaligned_w
	__nds32__get_unaligned_hw
	__nds32__isb
	__nds32__isync
	__nds32__jr_itoff
	__nds32__jr_toff
	__nds32__jral_iton
	__nds32__jral_ton
	__nds32__msync*
	__nds32__nop
	__nds32__put_unaligned_dw
	__nds32__put_unaligned_w
	__nds32__put_unaligned_hw
	__nds32__rotr
	__nds32__schedule_barrier
	__nds32__setend_big
	__nds32__setend_little
	__nds32__return_address
	__nds32__ret_itoff
	__nds32__ret_toff
	__nds32__set_current_sp
	__nds32__standby_no_wake_grant
	__nds32__standby_wake_grant
	__nds32__standby_wait_done
	__nds32__sva
	__nds32__svs
	__nds32__syscall
	__nds32__teqz
	__nds32__tnez
	__nds32__trap
	__nds32__wsbh

	12.2.4. Intrinsics for PE1 Instruction
	__nds32__abs
	__nds32__ave
	__nds32__bclr
	__nds32__bset
	__nds32__btgl
	__nds32__btst
	__nds32__clip
	__nds32__clips
	__nds32__clo
	__nds32__clz

	12.2.5. Intrinsics for PE2 Instructions
	__nds32__bse
	__nds32__bsp
	__nds32__pbsad
	__nds32__pbsada

	12.2.6. Intrinsics for String
	__nds32__ffb
	__nds32__ffmism
	__nds32__flmism

	12.2.7. Intrinsics for FPU
	__nds32__fcpynsd
	__nds32__fcpynss
	__nds32__fcpysd
	__nds32__fcpyss
	__nds32__fmfcfg
	__nds32__fmfcsr
	__nds32__fmtcsr

	12.2.8. Intrinsics for TLBOP
	__nds32__tlbop_trd (TLB Target Read)
	__nds32__tlbop_twr (TLB Target Write)
	__nds32__tlbop_rwr (TLB Random Write)
	__nds32__tlbop_rwlk (TLB Random Write and Lock)
	__nds32__tlbop_unlk (TLB Unlock)
	__nds32__tlbop_pb (TLB Probe)
	__nds32__tlbop_inv (TLB Invalidate VA)
	__nds32__tlbop_flua (TLB Invalidate All)

	12.2.9. Intrinsics for Saturation ISA
	__nds32__kaddw
	__nds32__ksubw
	__nds32__kaddh
	__nds32__ksubh
	__nds32__kdmbb
	__nds32__kdmbt
	__nds32__kdmtb
	__nds32__kdmtt
	__nds32__khmbb
	__nds32__khmbt
	__nds32__khmtb
	__nds32__khmtt
	__nds32__kslraw
	__nds32__rdov
	__nds32__clrov

	12.2.10. Intrinsics for Interrupt
	__nds32__setgie_dis
	__nds32__setgie_en
	__nds32__gie_dis
	__nds32__gie_en
	__nds32__enable_int
	__nds32__disable_int
	__nds32__set_pending_swint
	__nds32__clr_pending_swint
	__nds32__clr_pending_hwint
	__nds32__get_pending_int
	__nds32__get_all_pending_int
	__nds32__set_int_priority
	__nds32__get_int_priority
	__nds32__get_trig_type

	12.2.11. Intrinsics for COP ISA Extension
	__nds32__cpe1
	__nds32__cpe2
	__nds32__cpe3
	__nds32__cpe4
	__nds32__cpld
	__nds32__cpld_bi
	__nds32__cpldi
	__nds32__cpldi_bi
	__nds32__cplw
	__nds32__cplw_bi
	__nds32__cplwi
	__nds32__cplwi_bi
	__nds32__cpsd
	__nds32__cpsd_bi
	__nds32__cpsdi
	__nds32__cpsdi_bi
	__nds32__cpsw
	__nds32__cpsw_bi
	__nds32__cpswi
	__nds32__cpswi_bi
	__nds32__mfcpd
	__nds32__mfcpw
	__nds32__mfcppw
	__nds32__mtcpd
	__nds32__mtcpw
	__nds32__mtcppw

	13. User/Kernel Space
	13.1. Privilege Resources
	13.1.1. Configuration System Registers
	13.1.2. Interruption System Registers
	13.1.3. MMU System Registers
	13.1.4. ICE System Registers
	13.1.5. Performance Monitoring Registers
	13.1.6. Local Memory DMA Registers
	13.1.7. Implementation-Dependent Registers

	13.2. Privilege Resource Access Instructions
	13.2.1. Read from/Write to System Registers
	13.2.2. Jump Register with System Register Update
	13.2.3. MMU Instructions

	13.3. Privileged Instructions
	13.3.1. IRET: Interruption Return
	13.3.2. SETGIE.E/SETGIU.D: Set Global Interruption Enable
	13.3.3. CCTL: Cache Control
	13.3.4. STANDBY: Wait for External Event

	13.4. Instructions for User-space Program to Access System Resources
	13.4.1. DPREF/DPREFI: Data Prefetch
	13.4.2. SETEND.B/SETEND.L: Set Data Endian
	13.4.3. CCTL: Cache Control
	13.4.4. ISB/DSB: Data/Instruction Serialization Barrier
	13.4.5. STANDBY: Wait for External Event

	13.5. Serializations Related to CPU Control Register Accesses

	14. Linking/Loading
	14.1. Static Linking
	14.2. Dynamic Linking
	14.3. Guidelines to Decide Linking Mode

	15. Linker Script Generation
	15.1. Script Format SaG and Its Syntax
	15.1.1. BNF Notation for SaG Syntax
	15.1.2. Formal Syntax of SaG Format
	15.1.2.1 Overview
	15.1.2.2 Load Region Description
	15.1.2.3 Execution Region Description
	15.1.2.4 Input Section Description
	15.1.2.5 Execution Overlay Region Description
	15.1.2.6 Overlay Input Section Description
	15.1.2.7 Examples

	15.2. Linker Script Generator (LdSaG)

	16. Object Files
	16.1. ELF file
	16.2. Examine ELF file

	17. Andes MCUlib
	17.1. Features of MCUlib
	17.2. MCUlib printf Implementation
	17.3. Building Libgloss

	18. Virtual Hosting
	19. Advanced Programming Optimization
	19.1. Optimization Options
	19.1.1. Options for Code Size Optimization
	19.1.2. Options for Code Speed Optimization
	19.1.3. Options to Remove Unused Sections
	19.1.4. Options to Use EX9 Optimization
	19.1.5. Options to Use IFC Optimization
	19.1.6. Notice on Some Optimization Options
	19.1.7. Optimization Levels and Default Applied Options

	19.2. EX9 Optimization
	19.2.1. Export and Import
	19.2.2. EX9 Table Shared by Multiple Separately-linked Program Modules

	19.3. IFC (Inline Function Call) Optimization
	19.4. Zero Overhead Loop Optimization
	19.4.1. Zero Overhead Loop Optimization Limitations
	19.4.2. Disable ZOL Optimization for Specific Functions or Loops

	19.5. Instruction Max/Min of Performance Extension
	19.6. Primitive Data Type "int"
	19.7. Addressing Space for Programs
	19.7.1. Small Data Area and Relaxation
	19.7.2. Code Models

	19.8. Link Time Optimization in GCC
	19.8.1. Using LTO
	19.8.2. Notice When Applying LTO

	19.9. Function with Variable Number of Arguments
	19.10. Inline Assembly Programming
	19.10.1. General
	19.10.2. Symbolic Operand Name
	19.10.3. Clobber List
	19.10.4. Read-write Operand
	19.10.5. Constraint Modifier "&"
	19.10.6. Volatile
	19.10.7. Andes-specific Constraints

	Appendix
	Programming Tips
	Move libc.a to the beginning of text section
	Display register information and debug on reset by GDB commands

